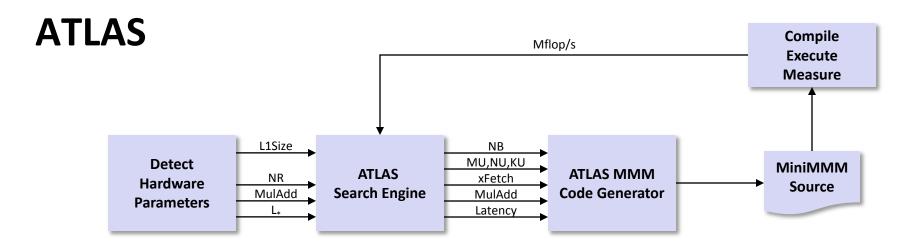
### **How to Write Fast Numerical Code**

Spring 2012 Lecture 13

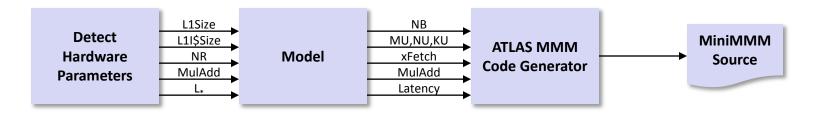
Instructor: Markus Püschel

**TAs:** Georg Ofenbeck & Daniele Spampinato

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



### **Model-Based ATLAS**



source: Pingali, Yotov, Cornell U.

### **Principles**

#### Optimization for memory hierarchy

- Blocking for cache
- Blocking for registers

#### Basic block optimizations

- Loop order for ILP
- Unrolling + scalar replacement
- Scheduling & software pipelining

#### Optimizations for virtual memory

Buffering (copying spread-out data into contiguous memory)

#### Autotuning

- Search over parameters (ATLAS)
- Model to estimate parameters (Model-based ATLAS)

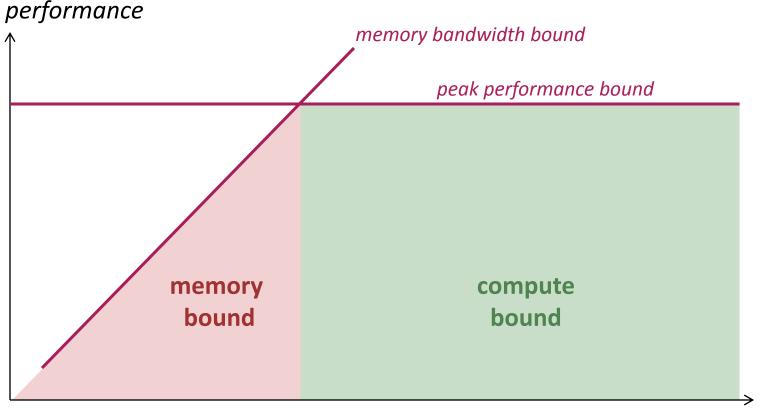
# All high performance MMM libraries do some of these (but possibly in a different way)

### Today

- Memory bound computations
- Sparse linear algebra, OSKI

### **Memory Bound Computation**

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity I(n) = O(1)



operational intensity

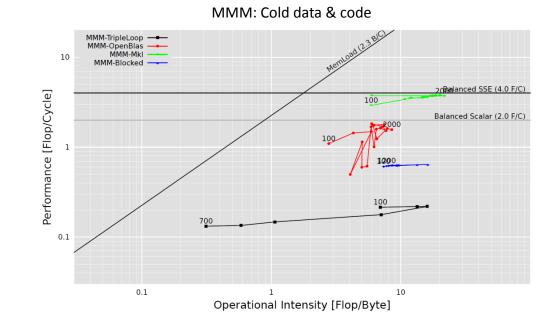
### Memory Bound Or Not? Depends On ...

#### The computer

- Memory bandwidth
- Peak performance

#### How it is implemented

- Good/bad locality
- SIMD or not



#### How the measurement is done

- Cold or warm cache for data/code
- In which cache data resides
- See next slide

### Example 1: BLAS 1, Warm Data & Code

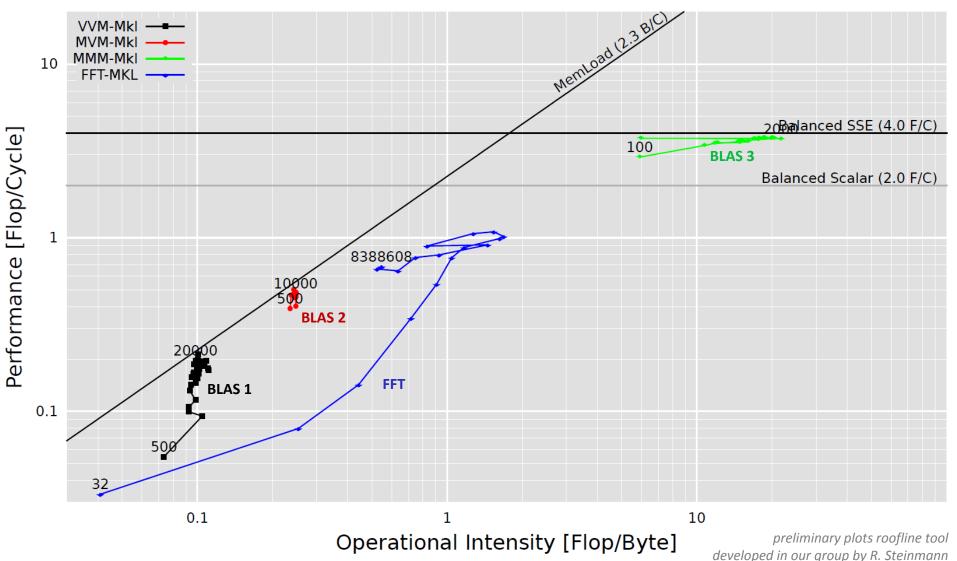
z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

#### 100 L2 **L1 L3 Bounds based** cache cache cache 90 on bandwidth 80 70 2 doubles/cycle 60 50 40 1 double/cycle 30 20 1.1 1/2 double/cycle 10 0 4 KB I KB 16 KB 64 KB 256 KB I MB 4 MB 16 MB sum of vector lengths (working set)

#### Percentage peak performance (peak = 1 add/cycle)

### Example 2: Cold Data & Code

Overview



### Example 3: Cold/Warm Data & Code



preliminary plots roofline tool developed in our group by R. Steinmann

### **Sparse Linear Algebra**

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI

#### References:

- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.; Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

### **Sparse Linear Algebra**

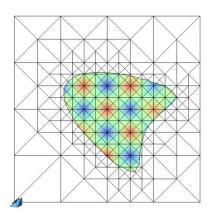
Very different characteristics from dense linear algebra (LAPACK etc.)

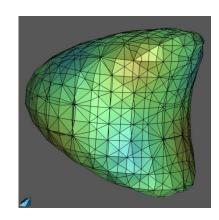
### Applications:

- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming
- scheduling
- signal processing (e.g., filters)

· ...

Core building block: Sparse MVM

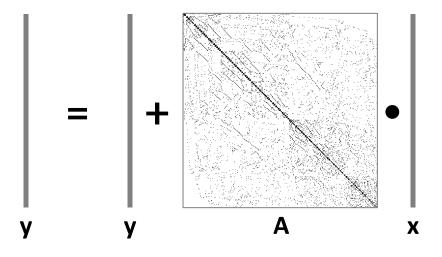




Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/ projects/unfitted-meshes\_en.html

### Sparse MVM (SMVM)

y = y + Ax, A sparse but known



- Typically executed many times for fixed A
- What is reused (temporal locality)?
- Upper bound on operational intensity?

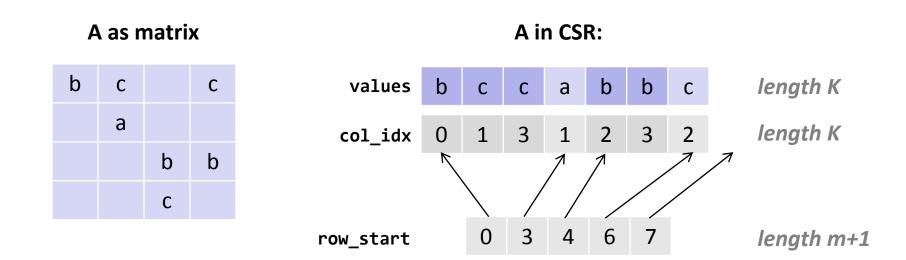
### **Storage of Sparse Matrices**

- Standard storage is obviously inefficient: Many zeros are stored
  - Unnecessary operations
  - Unnecessary data movement
  - Bad operational intensity
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
  - blackboard

### CSR

#### Assumptions:

- A is m x n
- K nonzero entries



#### Storage:

- K doubles + (K+m+1) ints = Θ(max(K, m))
- Typically: Θ(K)

### Sparse MVM Using CSR

 $\mathbf{y} = \mathbf{y} + \mathbf{A}\mathbf{x}$ 

```
void smvm(int m, const double* values, const int* col_idx,
          const int* row start, double* x, double* y)
{
  int i, j;
  double d;
  /* loop over m rows */
  for (i = 0; i < m; i++) {</pre>
    d = y[i]; /* scalar replacement since reused */
    /* loop over non-zero elements in row i */
    for (j = row start[i]; j < row start[i+1]; j++)
      d += values[j] * x[col idx[j]];
    y[i] = d;
  }
```

### CSR

#### Advantages:

- Only nonzero values are stored
- All three arrays for A (values, col\_idx, row\_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y

#### Disadvantages:

- Insertion into A is costly
- Poor temporal locality with respect to x

### **Impact of Matrix Sparsity on Performance**

- Adressing overhead (dense MVM vs. dense MVM in CSR):
  - ~ 2x slower (example only)
- Irregular structure
  - ~ 5x slower (example only) for "random" sparse matrices
- Fundamental difference between MVM and sparse MVM (SMVM):
  - Sparse MVM is input *dependent* (sparsity pattern of A)
  - Changing the order of computation (blocking) requires changing the data structure (CSR)

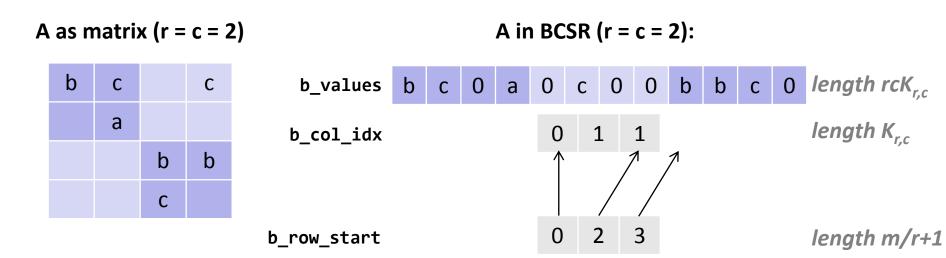
### **Bebop/Sparsity: SMVM Optimizations**

- Idea: Blocking for registers
- *Reason:* Reuse x to reduce memory traffic
- **Execution:** Block SMVM y = y + Ax into micro MVMs
  - Block size r x c becomes a parameter
  - Consequence: Change A from CSR to r x c block-CSR (BCSR)
- BCSR: Blackboard

### BCSR (Blocks of Size r x c)

#### Assumptions:

- A is m x n
- Block size r x c
- K<sub>r,c</sub> nonzero blocks



#### Storage:

rcK<sub>r,c</sub> doubles + (K<sub>r,c</sub>+m/r+1) ints = Θ(rcK<sub>r,c</sub>)

• 
$$rcK_{r,c} \ge K$$

### Sparse MVM Using 2 x 2 BCSR

```
void smvm 2x2(int bm, const int *b_row_start, const int *b_col_idx,
              const double *b values, double *x, double *y)
{
 int i, j;
 double d0, d1, c0, c1;
 /* loop over bm block rows */
 for (i = 0; i < bm; i++) {</pre>
   d0 = y[2*i]; /* scalar replacement since reused */
   d1 = y[2*i+1];
   /* dense micro MVM */
   for (j = b row start[i]; j < b row start[i+1]; j++, b values += 2*2) {
      c0 = x[2*b col idx[j]+0]; /* scalar replacement since reused */
     c1 = x[2*b col idx[j]+1];
     d0 += b values[0] * c0;
     d1 += b values[2] * c0;
     d0 += b values[1] * c1;
     d1 += b values[3] * c1;
    }
   y[2*i] = d0;
   y[2*i+1] = d1;
```

### BCSR

#### Advantages:

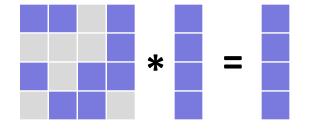
- Temporal locality with respect to x and y
- Reduced storage for indexes

#### Disadvantages:

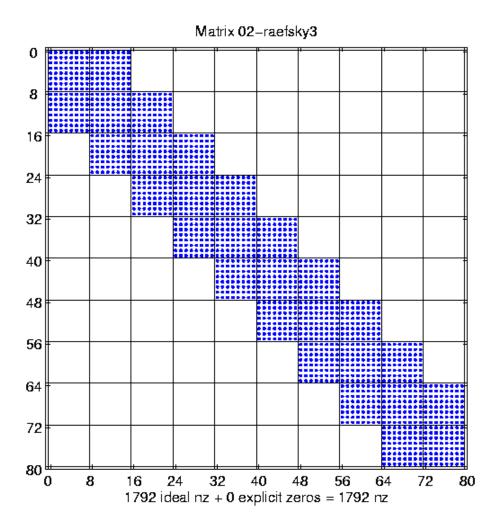
- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

#### Main factors (since memory bound):

- *Plus:* increased temporal locality on x + reduced index storage
   = reduced memory traffic
- Minus: more zeros = increased memory traffic



### Which Block Size (r x c) is Optimal?

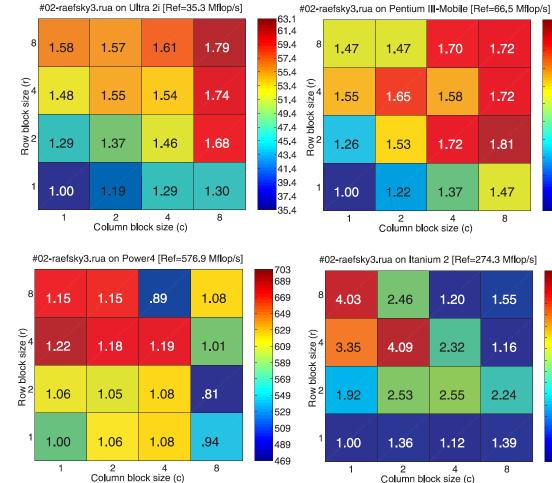


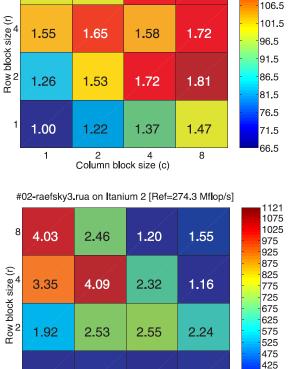
#### Example:

- 20,000 x 20,000 matrix (only part shown)
- Perfect 8 x 8 block structure
- No overhead when blocked r x c, with r, c divides 8

source: R. Vuduc, LLNL

### **Speed-up Through r x c Blocking**







Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

375

325 275

1.39

8

120.1

116.5

111.5

1.72

### How to Find the Best Blocking for given A?

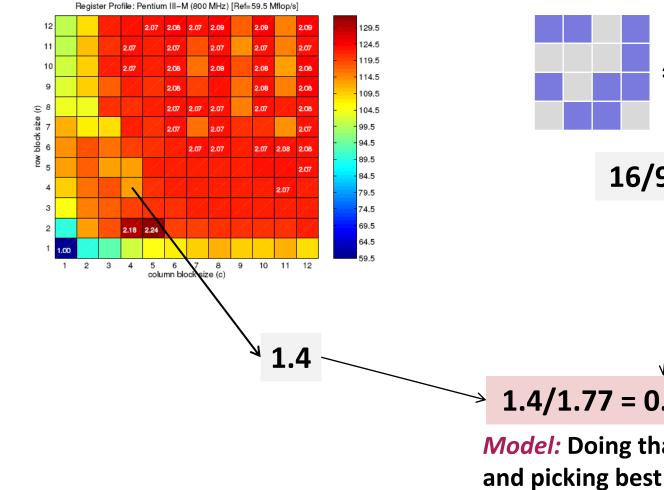
- Best block size is hard to predict (see previous slide)
- **Solution 1:** Searching over all r x c within a range, e.g.,  $1 \le r,c \le 12$ 
  - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
  - Total cost: 1440 SMVMs
  - Too expensive

#### Solution 2: Model

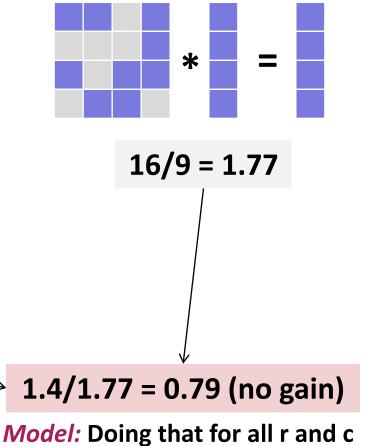
- Estimate the gain through blocking
- Estimate the loss through blocking
- Pick best ratio

### **Model: Example**

#### Gain by blocking (dense MVM)



#### Overhead (average) by blocking



### Model

- Goal: find best r x c for y = y + Ax
- **Gain** through r x c blocking (estimation):

 $G_{r,c} = \frac{dense \ MVM \ performance \ in \ r \ x \ c \ BCSR}{dense \ MVM \ performance \ in \ CSR}$ 

dependent on machine, independent of sparse matrix

 Overhead through r x c blocking (estimation) scan part of matrix A

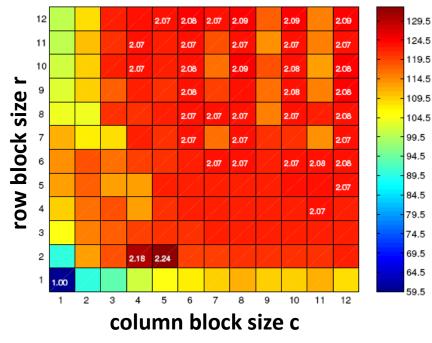
> O<sub>r,c</sub> = <u>number of matrix values in r x c BCSR</u> number of matrix values in CSR

independent of machine, dependent on sparse matrix

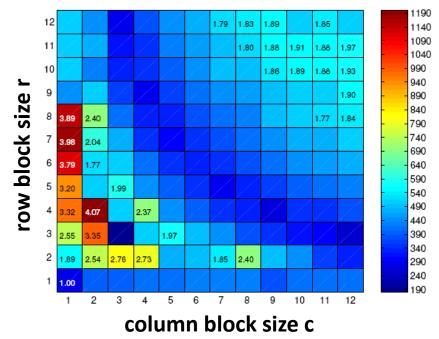
Expected gain: G<sub>r,c</sub>/O<sub>r,c</sub>

### Gain from Blocking (Dense Matrix in BCSR)

#### Pentium III



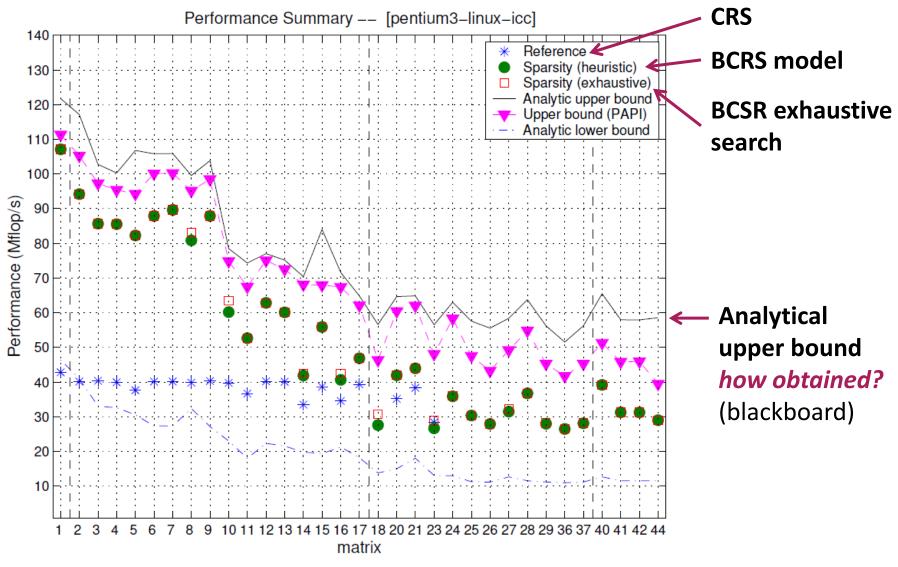
#### Itanium 2



- machine dependent
- hard to predict

**Source:** Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. *SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App.*, 18(1), pp. 135-158, 2004

## **Typical Result**



**Figure:** Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. *SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App.*, 18(1), pp. 135-158, 2004

## **Principles in Bebop/Sparsity Optimization**

- Optimization for memory hierarchy = increasing locality
  - Blocking for registers (micro-MMMs)
  - Requires change of data structure for A
  - Optimizations are *input dependent* (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MMM):
  - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
  - Use of performance model (versus measuring runtime) to evaluate expected gain

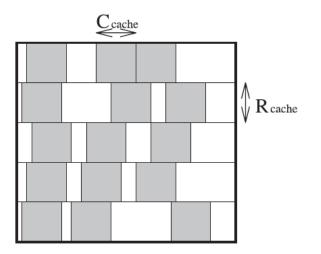
**Different from ATLAS** 

### **SMVM: Other Ideas**

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs

### **Cache Blocking**

Idea: divide sparse matrix into blocks of sparse matrices



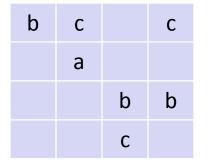
#### **Experiments:**

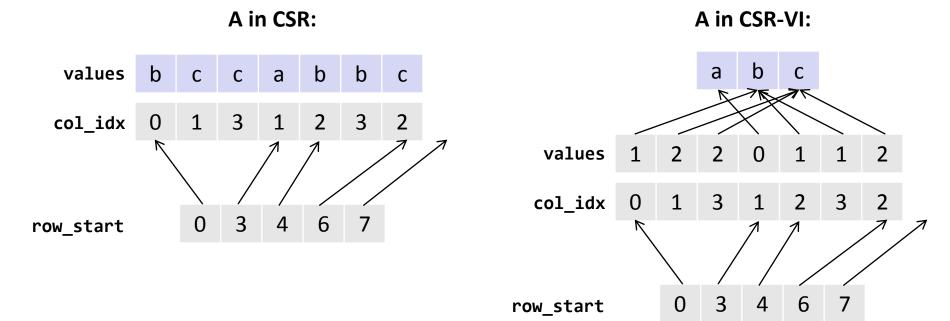
- Requires very large matrices (x and y do not fit into cache)
- Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

*Figure:* Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

### Value Compression

- **Situation:** Matrix A contains many duplicate values
- Idea: Store only unique ones plus index information



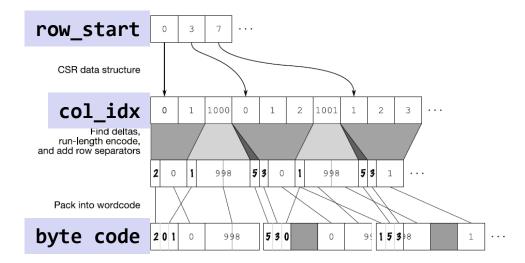


Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

### **Index Compression**

- **Situation:** Matrix A contains sequences of nonzero entries
- Idea: Use special byte code to jointly compress col\_idx and row\_start

#### Coding



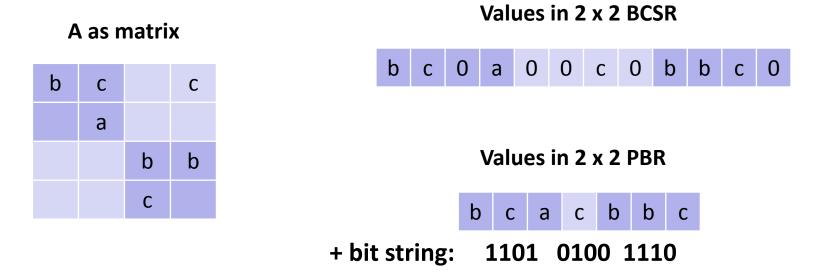
#### Decoding

0: acc = acc \* 256 + arg;1: col = col + acc \* 256 + arg; acc = 0; $emit_element(row, col); col = col + 1;$ **2**: col = col + acc \* 256 + arg; acc = 0;*emit\_element*(row, col);  $emit_element(row, col + 1); col = col + 2;$ 3: col = col + acc \* 256 + arg; acc = 0;emit\_element(row, col);  $emit_element(row, col + 1);$  $emit_element(row, col + 2); col = col + 3;$ 4: col = col + acc \* 256 + arg; acc = 0;*emit\_element*(row, col);  $emit_element(row, col + 1);$  $emit_element(row, col + 2);$  $emit_element(row, col + 3); col = col + 4;$ 5: row = row + 1: col = 0:

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations via Data Compression, pp. 307-316, ICS 2006

### **Pattern-Based Compression**

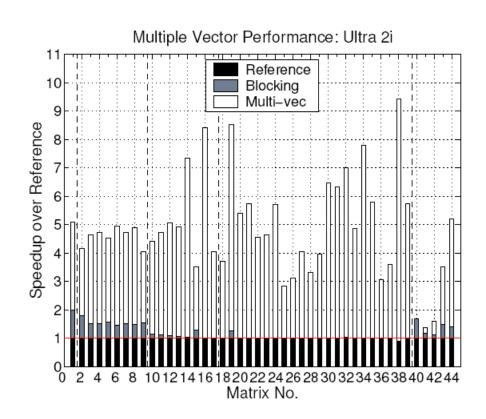
- Situation: After blocking A, many blocks have the same nonzero pattern
- Idea: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern



Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

### **Special scenario: Multiple inputs**

- Situation: Compute SMVM y = y + Ax for several independent x
- Blackboard
- Experiments: up to 9x speedup for 9 vectors



**Source:** Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. *SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App.*, 18(1), pp. 135-158, 2004