How to Write Fast Numerical Code

Spring 2012
Lecture 13

Instructor: Markus Püschel
TAs: Georg Ofenbeck \& Daniele Spampinato

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

ATLAS

Model-Based ATLAS

Principles

- Optimization for memory hierarchy
- Blocking for cache
- Blocking for registers

■ Basic block optimizations

- Loop order for ILP
- Unrolling + scalar replacement
- Scheduling \& software pipelining
- Optimizations for virtual memory
- Buffering (copying spread-out data into contiguous memory)
- Autotuning
- Search over parameters (ATLAS)
- Model to estimate parameters (Model-based ATLAS)
- All high performance MMM libraries do some of these (but possibly in a different way)

Today

- Memory bound computations
- Sparse linear algebra, OSKI

Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity $I(n)=O(1)$
performance

operational intensity

Memory Bound Or Not? Depends On ...

- The computer
- Memory bandwidth
- Peak performance
- How it is implemented
- Good/bad locality
- SIMD or not

- How the measurement is done
- Cold or warm cache for data/code
- In which cache data resides
- See next slide

Example 1: BLAS 1, Warm Data \& Code

 $\mathrm{z}=\mathrm{x}+\mathrm{y}$ on Core i7 (Nehalem, one core, no SSE), icc 12.0/02/fp:fast /Qipo

Example 2: Cold Data \& Code

Overview

Example 3: Cold/Warm Data \& Code

Sparse Linear Algebra

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI
- References:
- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.; Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming
- scheduling
- signal processing (e.g., filters)
- Core building block: Sparse MVM

- ...

Sparse MVM (SMVM)

- $y=y+A x, A$ sparse but known

- Typically executed many times for fixed \mathbf{A}
- What is reused (temporal locality)?
- Upper bound on operational intensity?

Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
- Unnecessary operations
- Unnecessary data movement
- Bad operational intensity
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
- blackboard

CSR

- Assumptions:
- A is $m \times n$
- K nonzero entries

A as matrix

b	c		c
	a		
		b	b
		c	

A in CSR:

values	b	c	c	a	b	b	c	length K
col_idx	0	1	3	1	2	3	2	length K
row_start		0	3	4	6	7		length m+1

■ Storage:

- K doubles $+(K+m+1)$ ints $=\Theta(\max (K, m))$
- Typically: $\Theta(K)$

Sparse MVM Using CSR

```
y=y+Ax
void smvm(int m, const double* values, const int* col_idx,
    const int* row_start, double* x, double* y)
{
    int i, j;
    double d;
    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */
        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++)
            d += values[j] * x[col_idx[j]];
        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

CSR

■ Advantages:

- Only nonzero values are stored
- All three arrays for A (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y
- Disadvantages:
- Insertion into A is costly
- Poor temporal locality with respect to x

Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
- ~ 2x slower (example only)
- Irregular structure
- ~ $5 x$ slower (example only) for "random" sparse matrices
- Fundamental difference between MVM and sparse MVM (SMVM):
- Sparse MVM is input dependent (sparsity pattern of A)
- Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

- Idea: Blocking for registers
- Reason: Reuse x to reduce memory traffic
- Execution: Block SMVM $\mathbf{y}=\mathbf{y}+\mathrm{Ax}$ into micro MVMs
- Block size rxc becomes a parameter
- Consequence: Change A from CSR to $r \times c$ block-CSR (BCSR)
- BCSR: Blackboard

BCSR (Blocks of Size r x c)

- Assumptions:
- A is $m \times n$
- Block size rxc
- $K_{r, c}$ nonzero blocks

A as matrix ($\mathrm{r}=\mathrm{c}=2$)
A in BCSR ($\mathrm{r}=\mathrm{c}=2$):

b	c		c	b_values	b	c	0	a	0	c	0			b	b	c	0	length rck ${ }_{r, c}$
	a			b_col_idx					0		1	1						length $K_{r, c}$
		b	b															
		c																
				row_start					0		2	3						length $m / r+1$

■ Storage:

- $\mathrm{rcK}_{\mathrm{r}, \mathrm{c}}$ doubles $+\left(\mathrm{K}_{\mathrm{r}, \mathrm{c}}+\mathrm{m} / \mathrm{r}+1\right)$ ints $=\Theta\left(\mathrm{rcK}_{\mathrm{r}, \mathrm{c}}\right)$
- $\mathrm{rcK}_{r, c} \geq \mathrm{K}$

Sparse MVM Using 2×2 BCSR

```
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
                        const double *b_values, double *x, double *y)
{
    int i, j;
    double d0, d1, c0, c1;
    /* loop over bm block rows */
    for (i = 0; i < bm; i++) {
        d0 = y[2*i]; /* scalar replacement since reused */
        d1 = y[2*i+1];
        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {
            c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
            c1 = x[2*b_col_idx[j]+1];
            d0 += b_values[0] * c0;
            d1 += b_values[2] * c0;
            d0 += b_values[1] * c1;
            d1 += b_values[3] * c1;
        }
        y[2*i] = d0;
        y[2*i+1] = d1;
    }
}
```


BCSR

- Advantages:
- Temporal locality with respect to x and y
- Reduced storage for indexes
- Disadvantages:
- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

- Main factors (since memory bound):
- Plus: increased temporal locality on $x+$ reduced index storage = reduced memory traffic
- Minus: more zeros = increased memory traffic

Which Block Size (rxc) is Optimal?

Example:

■ 20,000 x 20,000 matrix (only part shown)

- Perfect 8×8 block structure
- No overhead when blocked rxc, with r, c divides 8

Speed-up Through r x c Blocking

\#02-raefsky3.rua on Pentium III-Mobile [Ref=66.5 Mflop/s]					
63.1					120.1
61.4					116.5
$59.4 \quad 8$	1.47	1.47	1.70	1.72	111.5
$\begin{array}{r} 57.4 \\ 55.4 \end{array}$					-106.5
-53.4 E					-101.5
$-51.4 \stackrel{N}{N}^{\text {N }}$	1.55	1.65	1.58	1.72	96.5
-49.4 \%					
-47.4					91.5
-45.4 ${ }^{3} 2$	1.26	1.53	1.72	1.81	86.5
-43.4					81.5
41.4					76.5
39.4					
37.4	1.00	1.22	1.37	1.47	71.5
35.4	1		4	8	66.5
		Column	k size (c)		

- machine dependent
- hard to predict

How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)

■ Solution 1: Searching over all rxc within a range, e.g., $1 \leq r, c \leq 12$

- Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
- Total cost: 1440 SMVMs
- Too expensive
- Solution 2: Model
- Estimate the gain through blocking
- Estimate the loss through blocking
- Pick best ratio

Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

$16 / 9=1.77$
1.4/1.77 = 0.79 (no gain)

Model: Doing that for all r and c and picking best

Model

- Goal: find best rxc for $\mathrm{y}=\mathrm{y}+\mathrm{Ax}$
- Gain through rxchlocking (estimation):

$$
G_{r, c}=\frac{\text { dense MVM performance in } r \times c B C S R}{\text { dense MVM performance in CSR }}
$$

dependent on machine, independent of sparse matrix

- Overhead through rxc blocking (estimation) scan part of matrix A

$$
O_{r, c}=\frac{\text { number of matrix values in } r \times c B C S R}{\text { number of matrix values in } C S R}
$$

independent of machine, dependent on sparse matrix

- Expected gain: $\mathbf{G}_{\mathrm{r}, \mathrm{c}} / \mathbf{O}_{\mathrm{r}, \mathrm{c}}$

Gain from Blocking (Dense Matrix in BCSR)

Pentium III

Itanium 2

- machine dependent
- hard to predict

Typical Result

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'I Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
- Blocking for registers (micro-MMMs)
- Requires change of data structure for A
- Optimizations are input dependent (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MMM):
- Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
- Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs

Cache Blocking

- Idea: divide sparse matrix into blocks of sparse matrices

- Experiments:
- Requires very large matrices (x and y do not fit into cache)
- Speed-up up to $2.2 x$, only for few matrices, with 1×1 BCSR

Value Compression

- Situation: Matrix A contains many duplicate values
- Idea: Store only unique ones plus index information

b	c		c
	a		
		b	b
		c	

A in CSR-VI:

Index Compression

- Situation: Matrix A contains sequences of nonzero entries
- Idea: Use special byte code to jointly compress col_idx and row_start

Coding

Decoding

0: acc $=$ acc $* 256+$ arg;
1: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+$ arg; acc $=0$;
emit_element(row, col); col $=\mathrm{col}+1$;
2: $\mathrm{col}=\mathrm{col}+$ acc $* 256+$ arg; acc $=0$; emit_element(row, col);
emit_element(row, col +1); $\mathrm{col}=\mathrm{col}+2$;
3: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+\mathrm{arg}$; acc $=0$; emit_element(row, col); emit_element(row, col +1); emit_element(row, col +2); col $=\mathrm{col}+3$;
4: col $=\mathrm{col}+\mathrm{acc} * 256+$ arg; acc $=0$;
emit_element(row, col);
emit_element(row, col +1);
emit_element(row, col +2);
emit_element(row, col +3); $\mathrm{col}=\mathrm{col}+4$;
5: row = row +1 ; col $=0$;

Pattern-Based Compression

- Situation: After blocking A, many blocks have the same nonzero pattern
- Idea: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

Values in $\mathbf{2 \times 2} \mathbf{~ B C S R}$

b	c	0	a	0	0	c	0	b	b	c	0
		Values in $\mathbf{2 \times 2 P B R}$									
		b	b	a	c	b	b	c			
st		110101001110									

Special scenario: Multiple inputs

- Situation: Compute SMVM $\mathbf{y}=\mathrm{y}+\mathrm{Ax}$ for several independent x
- Blackboard
- Experiments:
up to $9 x$ speedup for 9 vectors

