
How to Write Fast Numerical Code
Spring 2012
Lecture 9

Instructor: Markus Püschel

TAs: Georg Ofenbeck & Daniele Spampinato

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

© Markus Püschel
Computer Science

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

© Markus Püschel
Computer Science

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

© Markus Püschel
Computer Science

The Path to LAPACK

 EISPACK and LINPACK
 Libraries for linear algebra algorithms

 Developed in the early 70s

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, …

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most
powerful supercomputers

 Problem:
 Implementation “vector-based,” i.e., little locality in data access

 Low performance on computers with deep memory hierarchy

 Became apparent in the 80s

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

© Markus Püschel
Computer Science

Matlab

 Invented in the late 70s by Cleve Moler

 Commercialized (MathWorks) in 84

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses LAPACK and other libraries but can only call it if you
operate with matrices and vectors and do not write your own loops

 A*B (calls MMM routine)

 A\b (calls linear system solver)

© Markus Püschel
Computer Science

LAPACK and BLAS

 Basic Idea:

 Basic Linear Algebra Subroutines (BLAS, list)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK implemented on top of BLAS

 Using BLAS 3 as much as possible

LAPACK

BLAS

static

reimplemented
for each platform

I(n) =

O(1)

O(1)

O(
p
C)

cache
size

http://www.netlib.org/blas/blasqr.pdf

© Markus Püschel
Computer Science

Why is BLAS3 so important?

 Using BLAS3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity I
= high performance

 Remember last time (blocking MMM):

* =

* =

I(n) =

O(1)

O(
p
C)

© Markus Püschel
Computer Science

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

© Markus Püschel
Computer Science

MMM: Complexity?

 Usually computed as C = AB + C

 Cost as computed before

 n3 multiplications + n3 additions = 2n3 floating point operations

 = O(n3) runtime

 Blocking

 Increases locality (see previous example)

 Does not decrease cost

 Can we reduce the op count?

© Markus Püschel
Computer Science

Strassen’s Algorithm

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische
Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Recurrence T(n) = 7T(n/2) + O(n2); hence O(nlog
2

(7)) ≈ O(n2.808)

 Crossover point, in terms of cost: below n=1000, but …

 Structure more complex → performance crossover much later

 Numerical stability inferior

 Can we reduce more?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

MMM: Cost by definition/Cost Strassen

log2(n)

crossover

© Markus Püschel
Computer Science

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S. "Matrix Multiplication via
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

 MMM is O(n2.376)

 MMM is obviously Ω(n2)

 It could well be close to Θ(n2)

 Compare this to matrix-vector multiplication:
 Known to be Θ(n2) (Winograd), i.e., boring

 Practically all code out there uses 2n3 flops

© Markus Püschel
Computer Science

MMM: Memory Hierarchy Optimization

matrix size

MMM (square real double) Core 2 Duo 3Ghz

triple loop

ATLAS generated

theoretical scalar peak

• Intel compiler icc –O2
• Huge performance difference for large sizes
• Great case study to learn memory hierarchy optimization

© Markus Püschel
Computer Science

ATLAS

 BLAS program generator and library (web, successor of PhiPAC)

 Idea: automatic porting

 People can also contribute handwritten code

 The generator uses empirical search over implementation
alternatives to find the fastest implementation
no vectorization or parallelization: so not really used anymore

 We focus on BLAS 3 MMM

 Search only over cost 2n3 algorithms
(cost equal to triple loop)

LAPACK

BLAS

static

regenerated
for each platform

http://math-atlas.sourceforge.net/

© Markus Püschel
Computer Science

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• for example blocking size
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, Cornell U.

© Markus Püschel
Computer Science

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute
Measure

Mflop/s

Model-Based ATLAS

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• More hardware parameters needed

source: Pingali, Yotov, Cornell U.

© Markus Püschel
Computer Science

Optimizing MMM

 Blackboard

 References:

"Automated Empirical Optimization of Software and the ATLAS project" by R.
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings
of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

