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Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking (BLAS 3): key to performance 

 How to make MMM fast: ATLAS, model-based ATLAS 
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Linear Algebra Algorithms: Examples 

 Solving systems of linear equations 

 Eigenvalue problems 

 Singular value decomposition 

 LU/Cholesky/QR/… decompositions 

 … and many others 

 

 

 Make up most of the numerical computation across disciplines 
(sciences, computer science, engineering) 

 Efficient software is extremely relevant 
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The Path to LAPACK 

 EISPACK and LINPACK 
 Libraries for linear algebra algorithms  

 Developed in the early 70s 

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, … 

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most 
powerful supercomputers 

 Problem:  
 Implementation “vector-based,” i.e., little locality in data access 

 Low performance on computers with deep memory hierarchy 

 Became apparent in the 80s 

 Solution: LAPACK 
 Reimplement the algorithms “block-based,” i.e., with locality 

 Developed late 1980s, early 1990s 

 Jim Demmel, Jack Dongarra et al. 

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500
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Matlab 

 Invented in the late 70s by Cleve Moler 

 Commercialized (MathWorks) in 84 

 Motivation: Make LINPACK, EISPACK easy to use 

 Matlab uses LAPACK and other libraries but can only call it if you 
operate with matrices and vectors and do not write your own loops 

 A*B (calls MMM routine) 

 A\b (calls linear system solver) 
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LAPACK and BLAS 

 Basic Idea: 

 

 

 

 Basic Linear Algebra Subroutines (BLAS, list) 

 BLAS 1: vector-vector operations (e.g., vector sum) 

 BLAS 2: matrix-vector operations (e.g., matrix-vector product) 

 BLAS 3: matrix-matrix operations (e.g., MMM) 

 LAPACK implemented on top of BLAS 

 Using BLAS 3 as much as possible 

LAPACK 

BLAS 

static 

reimplemented 
for each platform 

I(n) =

O(1)

O(1)

O(
p
C)

cache 
size 

http://www.netlib.org/blas/blasqr.pdf
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Why is BLAS3 so important? 

 Using BLAS3 (instead of BLAS 1 or 2) in LAPACK 
= blocking  
= high operational intensity I  
= high performance 

 Remember last time (blocking MMM): 

 

* = 

* = 

I(n) =

O(1)

O(
p
C)
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MMM: Complexity? 

 Usually computed as C = AB + C 

 Cost as computed before 

 n3 multiplications + n3 additions = 2n3 floating point operations 

 = O(n3) runtime 

 Blocking 

 Increases locality (see previous example) 

 Does not decrease cost 

 Can we reduce the op count? 
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Strassen’s Algorithm 

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische 
Mathematik 13, 354-356, 1969 
Until then, MMM was thought to be Θ(n3) 

 Recurrence T(n) = 7T(n/2) + O(n2); hence O(nlog
2

(7)) ≈ O(n2.808) 

 Crossover point, in terms of cost: below n=1000, but … 

 Structure more complex → performance crossover much later 

 Numerical stability inferior 

 

 Can we reduce more? 
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MMM Complexity: What is known 

 Coppersmith, D. and Winograd, S. "Matrix Multiplication via 
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990 

 MMM is O(n2.376) 

 

 MMM is obviously Ω(n2) 

 It could well be close to Θ(n2) 

 Compare this to matrix-vector multiplication:  
 Known to be Θ(n2) (Winograd), i.e., boring 

 

 

 Practically all code out there uses 2n3 flops 
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MMM: Memory Hierarchy Optimization 

matrix size 

MMM (square real double) Core 2 Duo 3Ghz 

triple loop 

ATLAS generated 

theoretical scalar peak 

• Intel compiler icc –O2 
• Huge performance difference for large sizes 
• Great case study to learn memory hierarchy optimization 
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ATLAS 

 BLAS program generator and library (web, successor of PhiPAC) 

 Idea: automatic porting 

 

 

 

 People can also contribute handwritten code 

 The generator uses empirical search over implementation 
alternatives to find the fastest implementation 
no vectorization or parallelization: so not really used anymore 

 We focus on BLAS 3 MMM 

 Search only over cost 2n3 algorithms  
(cost equal to triple loop) 

LAPACK 

BLAS 

static 

regenerated 
for each platform 

http://math-atlas.sourceforge.net/
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ATLAS Architecture 

Detect 
Hardware 

Parameters 

ATLAS Search 
Engine 

(MMSearch) 

NR 
MulAdd 

L* 

L1Size 
ATLAS MM 

Code Generator 
(MMCase) 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile, 
Execute, 
Measure 

MFLOPS 

Hardware parameters: 
• L1Size: size of L1 data cache 
• NR: number of registers 
• MulAdd: fused multiply-add available? 
• L* : latency of FP multiplication 

Search parameters: 
• for example blocking size 
• span search space 
• specify code 
• found by orthogonal line search 

source: Pingali, Yotov, Cornell U. 
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ATLAS 

Detect 
Hardware 

Parameters 

ATLAS  
Search Engine 

NR 
MulAdd 

L* 

L1Size 

ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile 
Execute 
Measure 

Mflop/s 

Model-Based ATLAS 

Detect 
Hardware 

Parameters 
Model NR 

MulAdd 
L* 

L1I$Size ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

L1Size 

• Search for parameters replaced by model to compute them 
• More hardware parameters needed 

source: Pingali, Yotov, Cornell U. 
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Optimizing MMM 

 Blackboard 

 References: 

"Automated Empirical Optimization of Software and the ATLAS project" by R. 
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001 
 

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,  
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings 
of the IEEE, 93(2), pp. 358–386, 2005. 

Our presentation is based on this paper 

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

