
How to Write Fast Numerical Code
Spring 2012
Lecture 7

Instructor: Markus Püschel

TAs: Georg Ofenbeck & Daniele Spampinato

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

© Markus Püschel
Computer Science

Last Time: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

Last Time: Memory/Compute Bound

 Operational intensity of a program/algorithm:

 “Definition:” Programs with high I are called compute bound,
programs with low I are called memory bound

 Bound on operational intensity (assumes cold cache):

Number of operations

Amount of data transferred cache ↔ RAM
I =

Number of operations

Size of input data + size of output data
I ≤

© Markus Püschel
Computer Science

Today

 Caches

Chapter 6 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

© Markus Püschel
Computer Science

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

© Markus Püschel
Computer Science

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

© Markus Püschel
Computer Science

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

© Markus Püschel
Computer Science

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

© Markus Püschel
Computer Science

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

Occurs on first access to a block

 Capacity miss

Occurs when working set is larger than the cache

 Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 Not a clean classification but still useful

© Markus Püschel
Computer Science

Cache Performance Metrics
 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

© Markus Püschel
Computer Science

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

© Markus Püschel
Computer Science

Cache Read

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

© Markus Püschel
Computer Science

Example (S=8, E=1)

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; i < 16; i++)
 for (i = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
} blackboard

Ignore the variables sum, i, j

© Markus Püschel
Computer Science

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; i < 16; i++)
 for (i = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

© Markus Püschel
Computer Science

Terminology

 Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

 Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

© Markus Püschel
Computer Science

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line
(needs a valid bit)

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

 Example: (Blackboard)

 Example: z = x + y, x, y, z vector of length n

 assume they fit jointly in cache

 cold cache

 Core 2:

 Write-back + Write-allocate

© Markus Püschel
Computer Science

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:7
 access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

x[0]

© Markus Püschel
Computer Science

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:2:7
 access(x[i])
 for i = 1:2:7
 access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality: no
Temporal locality: no

x[0]

© Markus Püschel
Computer Science

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for k = 0:1
 for i = 0:3
 access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 8 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

x[0]

© Markus Püschel
Computer Science

Locality Optimization: Blocking

 Example: MMM (blackboard)

© Markus Püschel
Computer Science

The Killer: Two-Power Strided Access

% Matlab style code
% x = x[0], …, x[n-1], n >> cache size
% t = 1,2,4,8,… a 2-power
for i = 0:(n/t)
 access(x[t*i])

Cache: E = 2, B = 4 doubles

x[0]

t = 1: t = 2: t = 4: t = 8: t ≥ 4S:

Spatial locality
Full cache used

Some spatial locality
1/2 cache used

No spatial locality
1/4 cache used

No spatial locality
1/8 cache used

No spatial locality
1/(4S) of cache used

blackboard

© Markus Püschel
Computer Science

The Killer: Where Does It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

