How to Write Fast Numerical Code

Spring 2012
Lecture 7

Instructor: Markus Puschel
TAs: Georg Ofenbeck & Daniele Spampinato

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Eldgensssische Tachnische Hochsehule Zirich

Last Time: Locality

m Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

m Temporal locality: : ; memory

Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: Q ,2 memor
y

ltems with nearby addresses tend
to be referenced close together in time

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Piischel ETH
Eidgensssische Technische Hochsehule Zurich
s Federalstifuts of

Computer Science

Last Time: Memory/Compute Bound

m Operational intensity of a program/algorithm:

e Number of operations
~ Amount of data transferred cache <> RAM

m “Definition:” Programs with high I are called compute bound,
programs with low / are called memory bound

m Bound on operational intensity (assumes cold cache):

Number of operations

| <
Size of input data + size of output data

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

Today

m Caches

Chapter 6 in Computer Systems: A Programmer's Perspective, 2"? edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

Eldgensssische Tachnische Hochsehule Zirich

Cache

m Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

Main
Memory

CPU Cache

m Naturally supports temporal locality

m Spatial locality is supported by transferring data in blocks
= Core 2: one block =64 B = 8 doubles

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

General Cache Mechanics

Smaller, faster, more expensive

Cache 4 9 10 3 memory caches a subset of
the blocks

Data is copied in block-sized

10 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
9 10 11
12 13 14 15

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

General Cache Concepts: Hit

Request: 14 Data in block b is needed

Block b is in cache:

Cache 8 9 14 3 Hit!
Memory 0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

General Cache Concepts: Miss

Cache

Memory

Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Eldgensssische Tachnische Hochsehule Zirich

Types of Cache Misses (The 3 C’s)

m Compulsory (cold) miss
Occurs on first access to a block
m Capacity miss
Occurs when working set is larger than the cache

m Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

m Not a clean classification but still useful

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

Cache Performance Metrics

m Miss Rate

Fraction of memory references not found in cache: misses / accesses
=1 - hit rate
m HitTime

= Time to deliver a block in the cache to the processor
= Core 2:
3 clock cycles for L1
14 clock cycles for L2
m Miss Penalty

= Additional time required because of a miss

= Core 2: about 100 cycles for L2 miss

© Markus Piischel ETH

Computer Science

General Cache Organization (S, E, B)

E = 2¢ lines per set

E = associativity, E=1: direct mapped
A

'd N\
r set
....... line
S=Zssets<
OO0 000000000 OCOEOGOOOOOOOONOOO
\.
Cache size:
S x E x B data bytes
v tag 0|1|2|eee*e|B1
valid bit —

B = 2® bytes per cache block (the data)

* [ocate set

* Check if any line in set
ca C h e Rea d has matching tag
E = 2¢ lines per set * Yes + line valid: hit
E = associativity, E=1: direct mapped
AL * Locate data starting
e N
- at offset

Address of word:

S = 25 sets < t bits s bits | b bits
\ ~ A ~ A —
tag set block

0000000000000 0000C0O0C0OCBOCBOCOCOOS index offset

data begins at this offset

v tag O[] 2]|ccce B-1

valid bit N~

B = 2® bytes per cache block (the data)

Example (S=8, E=1)

int sum_array_rows(double a[16][16])

{
int i, j;
double sum = 9;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][J];
return sum;

}

int sum_array cols(double a[16][16])

{
int i, j;
double sum = 90;

for (j = 0; 1 < 16; i++)
for (1 =0; j < 16; j++)
sum += a[i][]j];
return sum;

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
g Y,
'

B = 32 byte = 4 doubles

blackboard

Example (S=4, E=2)

int sum_array_rows(double a[16][16])
{

int i, j;

double sum = 0;

for (i = 0; 1 < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];
return sum;

}

int sum _array_cols(double a[16][16])
{

int i, j;

double sum = 0;

for (j = 0; 1 < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i][]];
return sum;

}

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
§ J
'

B = 32 byte = 4 doubles

blackboard

© Markus Piischel ETH

COMPULET SCIENCE S resemtmmmts ot wassiomymen

Terminology

m Direct mapped cache:
" CachewithE=1
" Means every block from memory has a unique location in cache

m Fully associative cache
® Cache withS=1 (i.e., maximal E)
= Means every block from memory can be mapped to any location in cache

m LRU (least recently used) replacement

= when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

What about writes?

m What to do on a write-hit?
= Write-through: write immediately to memory

= Write-back: defer write to memory until replacement of line
(needs a valid bit)

m What to do on a write-miss?
= Write-allocate: load into cache, update line in cache
= No-write-allocate: writes immediately to memory

m Example: (Blackboard)
= Example:z=x+Yy, X, y, z vector of length n
= assume they fit jointly in cache
= cold cache

m Core 2:
= \Write-back + Write-allocate

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

Small Example, Part 1

x[@]
V
Cache:
E =1 (direct mapped)
S=2

B =16 (2 doubles)

% Matlab style code
for j = 0:1
for i = 9:7
access(x[1i])

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

Array (accessed twice in example)
x = x[0], .., X[7]

Access pattern: 0123456701234567
Hit/Miss: MHMHMHMHMHMHMHMH

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

Small Example, Part 2

x[@]
V
Cache:
E =1 (direct mapped)
S=2

B =16 (2 doubles)

% Matlab style code
for j = 0:1
for i = 9:2:7
access(x[1i])
for 1 = 1:2:7
access(x[i])

Result: 16 misses
Spatial locality: no
Temporal locality: no

Array (accessed twice in example)
x = x[0], .., X[7]

Access pattern: 0246135702461357
Hit/Miss: mMMMMMMMMMMMMMMMM

© Markus Piischel ETH

COMPULEr SCIENCE St resertmsmruss ot casstomssoneh

Small Example, Part 3

x[9]
J/ . °
Cache: Array (accessed twice in example)
E = 1 (direct mapped) x = x[0], .., x[7]
S=2
B =16 (2 doubles)
% Matlab style code Access pattern: 0123012345674567
for j = 0:1 Hit/Miss: MHMHHHHHMHMHHHHH
for k = 0:1

for i = 0:3
access(x[i+4j])

Result: 4 misses, 8 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

Locality Optimization: Blocking

m Example: MMM (blackboard)

Q
3
3

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

The Killer: Two-Power Strided Access
blackboard

% X =
% t =
for i

x[e],

% Matlab style code
., X[n-1], n >> cache size
1,2,4,8,.. a 2-power

= 0:(n/t)
access(x[t*i])

Cache: E =2, B =4 doubles

t=1: t=2: t=4: t=8:

x[0]

I%HEIEEEI Er e s O -0 ECCOFECT"T
Eeeseess o0 _e 1 F__d__—1 C__—_OC——
EeedEess F 1 &1 OO OO
EeesEess F®OF &1 E-_ OO CO—OCTD—O

Spatial locality
Full cache used

Some spatial locality
1/2 cache used

No spatial locality
1/4 cache used

No spatial locality
1/8 cache used

ANNE NEEE

No spatial locality
1/(4S) of cache used

© Markus Piischel ETH

COMPULET SCIENCE S recermmsnos ot ecseloms oneh

The Killer: Where Does It Occur?

m Accessing two-power size 2D arrays (e.g., images) columnwise
= 2d Transforms
= Stencil computations

® Correlations

m Various transform algorithms
= Fast Fourier transform
= Wavelet transforms
= Filter banks

