
How to Write Fast Numerical Code
Spring 2012
Lecture 7

Instructor: Markus Püschel

TAs: Georg Ofenbeck & Daniele Spampinato

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

© Markus Püschel
Computer Science

Last Time: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

Last Time: Memory/Compute Bound

 Operational intensity of a program/algorithm:

 “Definition:” Programs with high I are called compute bound,
programs with low I are called memory bound

 Bound on operational intensity (assumes cold cache):

Number of operations

Amount of data transferred cache ↔ RAM
I =

Number of operations

Size of input data + size of output data
I ≤

© Markus Püschel
Computer Science

Today

 Caches

Chapter 6 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

© Markus Püschel
Computer Science

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

© Markus Püschel
Computer Science

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

© Markus Püschel
Computer Science

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

© Markus Püschel
Computer Science

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

© Markus Püschel
Computer Science

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

Occurs on first access to a block

 Capacity miss

Occurs when working set is larger than the cache

 Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 Not a clean classification but still useful

© Markus Püschel
Computer Science

Cache Performance Metrics
 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

© Markus Püschel
Computer Science

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

© Markus Püschel
Computer Science

Cache Read

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

© Markus Püschel
Computer Science

Example (S=8, E=1)

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; i < 16; i++)
 for (i = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
} blackboard

Ignore the variables sum, i, j

© Markus Püschel
Computer Science

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; i < 16; i++)
 for (i = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

© Markus Püschel
Computer Science

Terminology

 Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

 Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

© Markus Püschel
Computer Science

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line
(needs a valid bit)

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

 Example: (Blackboard)

 Example: z = x + y, x, y, z vector of length n

 assume they fit jointly in cache

 cold cache

 Core 2:

 Write-back + Write-allocate

© Markus Püschel
Computer Science

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:7
 access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

x[0]

© Markus Püschel
Computer Science

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:2:7
 access(x[i])
 for i = 1:2:7
 access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality: no
Temporal locality: no

x[0]

© Markus Püschel
Computer Science

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for k = 0:1
 for i = 0:3
 access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 8 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

x[0]

© Markus Püschel
Computer Science

Locality Optimization: Blocking

 Example: MMM (blackboard)

© Markus Püschel
Computer Science

The Killer: Two-Power Strided Access

% Matlab style code
% x = x[0], …, x[n-1], n >> cache size
% t = 1,2,4,8,… a 2-power
for i = 0:(n/t)
 access(x[t*i])

Cache: E = 2, B = 4 doubles

x[0]

t = 1: t = 2: t = 4: t = 8: t ≥ 4S:

Spatial locality
Full cache used

Some spatial locality
1/2 cache used

No spatial locality
1/4 cache used

No spatial locality
1/8 cache used

No spatial locality
1/(4S) of cache used

blackboard

© Markus Püschel
Computer Science

The Killer: Where Does It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

