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Technicalities 

 Research project: Time to finalize! 

 Find partner: fastcode-forum@lists.inf.ethz.ch 

 Lost on finding a project? Talk to me (e.g., office hours tomorrow) 

 

 Exam: Fr Apr 27th   

mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
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Last Time: ILP 

 Latency/throughput (Pentium 4 fp mult: 7/2) 
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Last Time: How Many Accumulators? 

cycles 

Those have to be  
independent 

Latency: 7 cycles 

Based on this insight:  K = #accumulators = ceil(latency/cycles per issue) 
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Compiler Limitations 

 Associativity law does not hold for floats: illegal transformation 

 No good way of handling choices (e.g., number of accumulators) 

 More examples of limitations today 

void combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *d  = get_vec_start(v); 
  data_t t   = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP d[i]; 
  *dest = t; 
} 

void unroll2_sa(vec_ptr v, data_t *dest) 
{ 
    int length = vec_length(v); 
    int limit  = length-1; 
    data_t *d  = get_vec_start(v); 
    data_t x0  = IDENT; 
    data_t x1  = IDENT; 
    int i; 
    /* Combine 2 elements at a time */ 
    for (i = 0; i < limit; i+=2) 
       x0 = x0 OP d[i]; 
       x1 = x1 OP d[i+1]; 
    /* Finish any remaining elements */ 
    for (; i < length; i++) 
 x0 = x0 OP d[i]; 
    *dest = x0 OP x1; 
} 



© Markus Püschel 
Computer Science 

Today 

 Measuring performance & benchmarking 
Section 3.2 in the tutorial  
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100  

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition, 
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010 

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
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Benchmarking 

 First: Verify your code! 

 Measure runtime (in [s] or [cycles]) for a set of relevant input sizes 

 seconds: actual runtime 

 cycles: abstracts from CPU frequency 

 Usually: Compute and show performance (in [flop/s] or [flop/cycle]) 

 Careful: Better performance ≠ better runtime (why?) 

 Op count could differ 

 Never show in one plot performance of two algorithms with substantially 
different op count 
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How to measure runtime? 

 C clock() 

 process specific, low resolution, very portable 

 gettimeofday 

 measures wall clock time, higher resolution, somewhat portable 

 Performance counter (e.g., TSC on Intel) 

 measures cycles (i.e., also wall clock time), highest resolution, not portable 

 Careful: 

 measure only what you want to measure  

 ensure proper machine state  
(e.g., cold or warm cache = input data is or is not in cache) 

 measure enough repetitions 

 check how reproducible; if not reproducible: fix it 

 Getting proper measurements is not easy at all! 
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Example: Timing MMM 
 Assume MMM(A,B,C,n) computes  

 C = C + AB, A,B,C are  nxn matrices 

double time_MMM(int n) 
{ // allocate 
  double *A=(double*)malloc(n*n*sizeof(double)); 
  double *B=(double*)malloc(n*n*sizeof(double)); 
  double *C=(double*)malloc(n*n*sizeof(double)); 
 
  // initialize 
  for (int i = 0; i < n*n; i++){ 
    A[i] = B[i] = C[i] = 0.0; 
  } 
 
  init_MMM(A,B,C,n); // if needed 
 
  // warm up cache (for warm cache timing) 
  MMM(A,B,C,n); 
 
  // time 
  ReadTime(t0); 
  for (int i = 0; i < TIMING_REPETITIONS; i++) 
    MMM(A,B,C,n); 
  ReadTime(t1); 
 
  // compute runtime 
  return (double)((t1-t0)/TIMING_REPETITIONS); 
}  
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Problems with Timing 
 Too few iterations: inaccurate non-reproducible timing 

 Too many iterations: system events interfere 

 Machine is under load: produces side effects 

 Multiple timings performed on the same machine 

 Bad data alignment of input/output vectors: align to multiples of cache line (on 
Core: address is divisible by 64) 

 Time stamp counter (if used) can overflow (on 32-bit architectures) 

 Machine was not rebooted for a long time: state of operating system causes 
problems 

 Computation is input data dependent: choose representative input data 

 Computation is inplace and data grows until an exception is triggered 
(computation is done with NaNs) 

 You work on a computer that has dynamic frequency scaling (e.g., turbo boost) 

 Always check whether timings make sense, are reproducible 
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Benchmarks in Writing 

 Specify experimental setup 

 platform 

 compiler and version 

 compiler flags used 

 Plot: Very readable 

 Title, x-label, y-label should be there 

 Fonts large enough 

 Enough contrast (no yellow on white please) 

 Proper number format 

 No: 13.254687; yes: 13.25 

 No: 2.0345e-05 s; yes: 20.3 μs 

 No: 100000 B; maybe: 100,000 B; yes: 100 KB 
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DFT 2n (single precision) on Pentium 4, 2.53 GHz 
[Gflop/s] 

n 

Spiral SSE 
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No legend; makes decoding easier 
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Today 

 Measuring performance & benchmarking 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Optimizing Compilers 

 Always use optimization flags: 

 gcc: default is no optimization (-O0)! 

 icc: some optimization is turned on 

 Good choices for gcc/icc: -O2, -O3, -march=xxx, -mSSE3, -m64 

 Read in manual what they do 

 Try to understand the differences 

 Try different flags and maybe different compilers 
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Example (On Core 2 Duo) 

 Compiled without flags:  
~1300 cycles 

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize 
~150 cycles 

double a[4][4]; 
double b[4][4]; 
double c[4][4]; 
 
/* Multiply 4 x 4 matrices c = a*b + c */ 
void mmm(double *a, double *b, double *c) { 
  int i, j, k; 
 
  for (i = 0; i < 4; i++) 
    for (j = 0; j < 4; j++) 
      for (k = 0; k < 4; k++) 
        c[i*4+j] += a[i*4 + k]*b[k*4 + j]; 
} 

Prevents use of SSE 
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Optimizing Compilers 

 Compilers are good at: mapping program to machine 

 register allocation 

 code selection and ordering (instruction scheduling) 

 dead code elimination 

 eliminating minor inefficiencies 

 Compilers are not good at: algorithmic restructuring 

 For example to increase ILP, locality, etc. 

 Cannot deal with choices 

 Compilers are not good at: overcoming “optimization blockers” 

 potential memory aliasing 

 potential procedure side-effects 
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Limitations of Optimizing Compilers 

 If in doubt, the compiler is conservative 

 Operate under fundamental constraints 

 Must not change program behavior under any possible condition 

 Often prevents it from making optimizations when would only affect behavior 
under pathological conditions 

 Most analysis is performed only within procedures 

 Whole-program analysis is too expensive in most cases 

 Most analysis is based only on static information 

 Compiler has difficulty anticipating run-time inputs 

 Not good at evaluating or dealing with choices 
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Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Example: Data Type for Vectors 

/* data structure for vectors */ 
typedef struct{ 
  int len; 
  double *data; 
} vec; 

/* retrieve vector element and store at val */ 
int get_vec_element(vec *v, int idx, double *val) 
{ 
  if (idx < 0 || idx >= v->len) 
    return 0; 
  *val = v->data[idx]; 
  return 1; 
} 

len 

data 
0 1 len-1 
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Example: Summing Vector Elements 

/* sum elements of vector */ 
double sum_elements(vec *v, double *res)  
{ 
  int i; 
  n = vec_length(v); 
  *res = 0.0; 
  double t; 
   
  for (i = 0; i < n; i++) { 
    get_vec_element(v, i, &t); 
    *res += t; 
  } 
  return res; 
} 

Overhead for every fp +: 
• One fct call 
• One < 
• One >= 
• One || 
• One memory variable 

access 
 

Slowdown:  
probably 10x or more 

/* retrieve vector element and store at val */ 
int get_vec_element(vec *v, int idx, double *val) 
{ 
  if (idx < 0 || idx >= v->len) 
    return 0; 
  *val = v->data[idx]; 
  return 1; 
} 



© Markus Püschel 
Computer Science 

Removing Procedure Call 

/* sum elements of vector */ 
double sum_elements(vec *v, double *res)  
{ 
  int i; 
  n = vec_length(v); 
  *res = 0.0; 
  double *data = get_vec_start(v); 
   
  for (i = 0; i < n; i++) 
  *res += data[i]; 
  return res; 
} 

/* sum elements of vector */ 
double sum_elements(vec *v, double *res)  
{ 
  int i; 
  n = vec_length(v); 
  *res = 0.0; 
  double t; 
   
  for (i = 0; i < n; i++) { 
    get_vec_element(v, i, &t); 
    *res += t; 
  } 
  return res; 
} 
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Removing Procedure Calls 

 Procedure calls can be very expensive 

 Bound checking can be very expensive 

 Abstract data types can easily lead to inefficiencies 

 Usually avoided for in superfast numerical library functions 

 

 Watch your innermost loop! 

 Get a feel for overhead versus actual computation being performed 
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Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 
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Code Motion 

 Reduce frequency with which computation is performed 

 If it will always produce same result 

 Especially moving code out of loop (loop-invariant code motion) 

 Sometimes also called precomputation 

  int j; 
  int ni = n*i; 
  for (j = 0; j < n; j++) 
    a[ni+j] = b[j]; 

void set_row(double *a, double *b, 
   int i, int n) 
{ 
  int j; 
  for (j = 0; j < n; j++) 
    a[n*i+j] = b[j]; 
} 

a 

b 
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Compiler is likely  
to do that 

Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Strength Reduction 

 Replace costly operation with simpler one 

 Example: Shift/add instead of multiply or divide  16*x → x << 4 

 Utility machine dependent 

 Example: Recognize sequence of products 

 

 

 

 

 

for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    a[n*i + j] = b[j]; 

int ni = 0; 
for (i = 0; i < n; i++) { 
  for (j = 0; j < n; j++) 
    a[ni + j] = b[j]; 
  ni += n; 
} 
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Compiler is likely  
to do that 

Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Share Common Subexpressions 

 Reuse portions of expressions 

 Compilers often not very sophisticated in exploiting arithmetic properties 

/* Sum neighbors of i,j */ 
up    = val[(i-1)*n + j  ]; 
down  = val[(i+1)*n + j  ]; 
left  = val[i*n     + j-1]; 
right = val[i*n     + j+1]; 
sum   = up + down + left + right; 

int inj = i*n + j; 
up      = val[inj - n]; 
down    = val[inj + n]; 
left    = val[inj - 1]; 
right   = val[inj + 1]; 
sum     = up + down + left + right; 

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n 
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Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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void lower(char *s) 
{ 
  int i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
} 

Optimization Blocker #1: Procedure Calls 

 Procedure to convert string to lower case 

 

/* My version of strlen */ 
size_t strlen(const char *s) 
{ 
  size_t length = 0; 
  while (*s != '\0') { 
    s++;  
    length++; 
  } 
  return length; 
} 

O(n) 

O(n2) instead of O(n) 
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Improving Performance 

 Move call to strlen outside of loop 

 Since result does not change from one iteration to another 

 Form of code motion/precomputation 

void lower(char *s) 
{ 
  int i; 
  int len = strlen(s); 
  for (i = 0; i < len; i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
} 

void lower(char *s) 
{ 
  int i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
} 
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Optimization Blocker: Procedure Calls 

 Why couldn’t compiler move strlen out of  inner loop? 

 Procedure may have side effects 

 Compiler usually treats procedure call as a black box that cannot be 
analyzed 

 Consequence: conservative in optimizations 

 In this case the compiler may actually do it if strlen is recognized as 
built-in function 
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Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Optimization Blocker: Memory Aliasing 

 Code updates b[i] (= memory access) on every iteration 

/* Sums rows of n x n matrix a  
   and stores in vector b  */ 
void sum_rows1(double *a, double *b, int n) { 
  int i, j; 
 
  for (i = 0; i < n; i++) { 
    b[i] = 0; 
    for (j = 0; j < n; j++) 
      b[i] += a[i*n + j]; 
  } 
} 

a 

b 

Σ 
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Optimization Blocker: Memory Aliasing 
/* Sums rows of n x n matrix a  
   and stores in vector b  */ 
void sum_rows1(double *a, double *b, int n) { 
  int i, j; 
 
  for (i = 0; i < n; i++) { 
    b[i] = 0; 
    for (j = 0; j < n; j++) 
      b[i] += a[i*n + j]; 
  } 
} 

a 

b 

Σ 

/* Sums rows of n x n matrix a 
   and stores in vector b  */ 
void sum_rows2(double *a, double *b, int n) { 
  int i, j; 
 
  for (i = 0; i < n; i++) { 
    double val = 0; 
    for (j = 0; j < n; j++) 
      val += a[i*n + j]; 
    b[i] = val; 
  } 
} 

Does compiler optimize this? 
No! 
Why? 
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Reason: Possible Memory Aliasing 

 If memory is accessed, compiler assumes the possibility of side effects 

 Example: 

double A[9] =  
  { 0,   1,   2, 
    4,   8,  16}, 
   32,  64, 128}; 
 
double B[3] = A+3; 
 
sum_rows1(A, B, 3); 

i = 0: [3,  8,  16] 

init:  [4,  8,  16] 

i = 1: [3, 22,  16] 

i = 2: [3, 22, 224] 

Value of B: 

/* Sums rows of n x n matrix a  
   and stores in vector b  */ 
void sum_rows1(double *a, double *b, int n) { 
  int i, j; 
 
  for (i = 0; i < n; i++) { 
    b[i] = 0; 
    for (j = 0; j < n; j++) 
      b[i] += a[i*n + j]; 
  } 
} 
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Removing Aliasing 

 Scalar replacement: 

 Copy array elements that are reused into temporary variables 

 Perform computation on those variables 

 Enables register allocation and instruction scheduling 

 Assumes no memory aliasing (otherwise possibly incorrect) 

/* Sums rows of n x n matrix a 
   and stores in vector b  */ 
void sum_rows2(double *a, double *b, int n) { 
  int i, j; 
 
  for (i = 0; i < n; i++) { 
    double val = 0; 
    for (j = 0; j < n; j++) 
      val += a[i*n + j]; 
    b[i] = val; 
  } 
} 
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Optimization Blocker: Memory Aliasing 

 Memory aliasing:  
Two different memory references write to the same location 

 Easy to have happen in C 

 Since allowed to do address arithmetic 

 Direct access to storage structures 

 Hard to analyze = compiler cannot figure it out 

 Hence is conservative 

 Solution: Scalar replacement in innermost loop 

 Copy memory variables that are reused into local variables 

 Basic scheme: 

Load: t1 = a[i], t2 = b[i+1], …. 

Compute: t4 = t1 * t2; …. 

Store: a[i] = t12, b[i+1] = t7, … 
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More Difficult Example 

 Which array elements are reused? 

 All of them! But how to take advantage? 

c = (double *) calloc(sizeof(double), n*n); 
 
/* Multiply n x n matrices c = a*b + c  */ 
void mmm(double *a, double *b, double *c, int n) { 
  int i, j, k; 
 
  for (i = 0; i < n; i++) 
    for (j = 0; j < n; j++) 
      for (k = 0; k < n; k++) 
        c[i*n+j] += a[i*n + k]*b[k*n + j]; 
} 

a b 

i 

j 

* 

c 

= 
c 

+ 
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Step 1: Blocking (Here: 2 x 2) 

Blocking, also called tiling = partial unrolling + loop exchange 
Assumes associativity (= compiler will not do it) 

c = (double *) calloc(sizeof(double), n*n); 
 
/* Multiply n x n matrices c = a*b + c  */ 
void mmm(double *a, double *b, double *c, int n) { 
  int i, j, k; 
     
  for (i = 0; i < n; i+=2) 
    for (j = 0; j < n; j+=2) 
      for (k = 0; k < n; k+=2) 
        for (i1 = i; i1 < i+2; i1++) 
          for (j1 = j; j1 < j+2; j1++) 
            for (k1 = k; k1 < k+2; k1++) 
      c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1]; 
} 

a b 

i1 

j1 

* 

c 

= 
c 

+ 
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Step 2: Unrolling Inner Loops 

 Every array element a[…], b[…],c[…] used twice 

 Now scalar replacement can be applied  
(so again: loop unrolling is done with a purpose) 

<body>: 
c[i*n + j]         = a[i*n + k]*b[k*n + j] + a[i*n + k+1]*b[(k+1)*n + j]  
                     + c[i*n + j] 
c[(i+1)*n + j]     = a[(i+1)*n + k]*b[k*n + j] + a[(i+1)*n + k+1]*b[(k+1)*n + j]     
                     + c[(i+1)*n + j] 
c[i*n + (j+1)]     = a[i*n + k]*b[k*n + (j+1)] + a[i*n + k+1]*b[(k+1)*n + (j+1)]  
                     + c[i*n + (j+1)] 
c[(i+1)*n + (j+1)] = a[(i+1)*n + k]*b[k*n + (j+1)]  
                     + a[(i+1)*n + k+1]*b[(k+1)*n + (j+1)] + c[(i+1)*n + (j+1)] 

c = (double *) calloc(sizeof(double), n*n); 
 
/* Multiply n x n matrices c = a*b + c  */ 
void mmm(double *a, double *b, double *c, int n) { 
  int i, j, k; 
     
  for (i = 0; i < n; i+=2) 
    for (j = 0; j < n; j+=2) 
      for (k = 0; k < n; k+=2) 
        <body> 
} 
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Can Compiler Remove Aliasing? 

for (i = 0; i < n; i++) 
  a[i] = a[i] + b[i]; 

Potential aliasing: Can compiler do something about it? 
 
Compiler can insert runtime check: 

if (a + n < b || b + n < a) 
  /* further optimizations may be possible now */ 
  ... 
else 
  /* aliased case */ 
  ... 
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Removing Aliasing With Compiler 

 Globally with compiler flag:  

 -fno-alias, /Oa 

 -fargument-noalias, /Qalias-args- (function arguments only) 

 For one loop: pragma 

 

 

 

 

 For specific arrays: restrict (needs compiler flag –restrict, /Qrestrict) 

void add(float *a, float *b, int n) { 
  #pragma ivdep 
  for (i = 0; i < n; i++) 
    a[i] = a[i] + b[i]; 
} 

void add(float *restrict a, float *restrict b, int n) { 
  for (i = 0; i < n; i++) 
    a[i] = a[i] + b[i]; 
} 
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Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 
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Summary 

 One can easily loose 10x, 100x in runtime or even more 

 

 

 

 

 

 

 What matters besides operation count: 

 Coding style (unnecessary procedure calls, unrolling, reordering, …) 

 Algorithm structure (instruction level parallelism, locality, …) 

 Data representation (complicated structs or simple arrays) 

 

20x  
4x SSE  

4x threading 
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Summary: Optimize at Multiple Levels 

 Algorithm:  

 Evaluate different algorithm choices 

 Restructuring may be needed (ILP, locality) 

 Data representations:  

 Careful with overhead of complicated data types 

 Best are arrays 

 Procedures:  

 Careful with overhead 

 They are black boxes for the compiler 

 Loops: 

 Often need to be restructured (ILP, locality) 

 Unrolling often necessary to enable other optimizations 

 Watch the innermost loop bodies 
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Numerical Functions 

 Use arrays if possible 

 Unroll to some extent 

 To make ILP explicit 

 To enable scalar replacement and hence register allocation for variables 
that are reused 


