
How to Write Fast Numerical Code
Spring 2012
Lecture 5

Instructor: Markus Püschel

TA: Georg Ofenbeck

© Markus Püschel
Computer Science

Technicalities

 Research project: Time to finalize!

 Find partner: fastcode-forum@lists.inf.ethz.ch

 Lost on finding a project? Talk to me (e.g., office hours tomorrow)

 Exam: Fr Apr 27th

mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

Last Time: ILP

 Latency/throughput (Pentium 4 fp mult: 7/2)

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

Twice as fast

© Markus Püschel
Computer Science

Last Time: How Many Accumulators?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

© Markus Püschel
Computer Science

Compiler Limitations

 Associativity law does not hold for floats: illegal transformation

 No good way of handling choices (e.g., number of accumulators)

 More examples of limitations today

void combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

void unroll2_sa(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2)
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 /* Finish any remaining elements */
 for (; i < length; i++)
 x0 = x0 OP d[i];
 *dest = x0 OP x1;
}

© Markus Püschel
Computer Science

Today

 Measuring performance & benchmarking
Section 3.2 in the tutorial
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100

© Markus Püschel
Computer Science

Benchmarking

 First: Verify your code!

 Measure runtime (in [s] or [cycles]) for a set of relevant input sizes

 seconds: actual runtime

 cycles: abstracts from CPU frequency

 Usually: Compute and show performance (in [flop/s] or [flop/cycle])

 Careful: Better performance ≠ better runtime (why?)

 Op count could differ

 Never show in one plot performance of two algorithms with substantially
different op count

© Markus Püschel
Computer Science

How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Intel)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

© Markus Püschel
Computer Science

Example: Timing MMM
 Assume MMM(A,B,C,n) computes

 C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)
{ // allocate
 double *A=(double*)malloc(n*n*sizeof(double));
 double *B=(double*)malloc(n*n*sizeof(double));
 double *C=(double*)malloc(n*n*sizeof(double));

 // initialize
 for (int i = 0; i < n*n; i++){
 A[i] = B[i] = C[i] = 0.0;
 }

 init_MMM(A,B,C,n); // if needed

 // warm up cache (for warm cache timing)
 MMM(A,B,C,n);

 // time
 ReadTime(t0);
 for (int i = 0; i < TIMING_REPETITIONS; i++)
 MMM(A,B,C,n);
 ReadTime(t1);

 // compute runtime
 return (double)((t1-t0)/TIMING_REPETITIONS);
}

© Markus Püschel
Computer Science

Problems with Timing
 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache line (on
Core: address is divisible by 64)

 Time stamp counter (if used) can overflow (on 32-bit architectures)

 Machine was not rebooted for a long time: state of operating system causes
problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

 You work on a computer that has dynamic frequency scaling (e.g., turbo boost)

 Always check whether timings make sense, are reproducible

© Markus Püschel
Computer Science

Benchmarks in Writing

 Specify experimental setup

 platform

 compiler and version

 compiler flags used

 Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (no yellow on white please)

 Proper number format

 No: 13.254687; yes: 13.25

 No: 2.0345e-05 s; yes: 20.3 μs

 No: 100000 B; maybe: 100,000 B; yes: 100 KB

© Markus Püschel
Computer Science

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2n (single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly

emphasized
(red, thicker) No y-axis

(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

© Markus Püschel
Computer Science

Today

 Measuring performance & benchmarking

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Optimizing Compilers

 Always use optimization flags:

 gcc: default is no optimization (-O0)!

 icc: some optimization is turned on

 Good choices for gcc/icc: -O2, -O3, -march=xxx, -mSSE3, -m64

 Read in manual what they do

 Try to understand the differences

 Try different flags and maybe different compilers

© Markus Püschel
Computer Science

Example (On Core 2 Duo)

 Compiled without flags:
~1300 cycles

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize
~150 cycles

double a[4][4];
double b[4][4];
double c[4][4];

/* Multiply 4 x 4 matrices c = a*b + c */
void mmm(double *a, double *b, double *c) {
 int i, j, k;

 for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 for (k = 0; k < 4; k++)
 c[i*4+j] += a[i*4 + k]*b[k*4 + j];
}

Prevents use of SSE

© Markus Püschel
Computer Science

Optimizing Compilers

 Compilers are good at: mapping program to machine

 register allocation

 code selection and ordering (instruction scheduling)

 dead code elimination

 eliminating minor inefficiencies

 Compilers are not good at: algorithmic restructuring

 For example to increase ILP, locality, etc.

 Cannot deal with choices

 Compilers are not good at: overcoming “optimization blockers”

 potential memory aliasing

 potential procedure side-effects

© Markus Püschel
Computer Science

Limitations of Optimizing Compilers

 If in doubt, the compiler is conservative

 Operate under fundamental constraints

 Must not change program behavior under any possible condition

 Often prevents it from making optimizations when would only affect behavior
under pathological conditions

 Most analysis is performed only within procedures

 Whole-program analysis is too expensive in most cases

 Most analysis is based only on static information

 Compiler has difficulty anticipating run-time inputs

 Not good at evaluating or dealing with choices

© Markus Püschel
Computer Science

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{
 int len;
 double *data;
} vec;

/* retrieve vector element and store at val */
int get_vec_element(vec *v, int idx, double *val)
{
 if (idx < 0 || idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

len

data
0 1 len-1

© Markus Püschel
Computer Science

Example: Summing Vector Elements

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = vec_length(v);
 *res = 0.0;
 double t;

 for (i = 0; i < n; i++) {
 get_vec_element(v, i, &t);
 *res += t;
 }
 return res;
}

Overhead for every fp +:
• One fct call
• One <
• One >=
• One ||
• One memory variable

access

Slowdown:
probably 10x or more

/* retrieve vector element and store at val */
int get_vec_element(vec *v, int idx, double *val)
{
 if (idx < 0 || idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

© Markus Püschel
Computer Science

Removing Procedure Call

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = vec_length(v);
 *res = 0.0;
 double *data = get_vec_start(v);

 for (i = 0; i < n; i++)
 *res += data[i];
 return res;
}

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{
 int i;
 n = vec_length(v);
 *res = 0.0;
 double t;

 for (i = 0; i < n; i++) {
 get_vec_element(v, i, &t);
 *res += t;
 }
 return res;
}

© Markus Püschel
Computer Science

Removing Procedure Calls

 Procedure calls can be very expensive

 Bound checking can be very expensive

 Abstract data types can easily lead to inefficiencies

 Usually avoided for in superfast numerical library functions

 Watch your innermost loop!

 Get a feel for overhead versus actual computation being performed

© Markus Püschel
Computer Science

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

© Markus Püschel
Computer Science

Code Motion

 Reduce frequency with which computation is performed

 If it will always produce same result

 Especially moving code out of loop (loop-invariant code motion)

 Sometimes also called precomputation

 int j;
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(double *a, double *b,
 int i, int n)
{
 int j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

a

b

© Markus Püschel
Computer Science

Compiler is likely
to do that

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Strength Reduction

 Replace costly operation with simpler one

 Example: Shift/add instead of multiply or divide 16*x → x << 4

 Utility machine dependent

 Example: Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

© Markus Püschel
Computer Science

Compiler is likely
to do that

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Share Common Subexpressions

 Reuse portions of expressions

 Compilers often not very sophisticated in exploiting arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n

© Markus Püschel
Computer Science

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Optimization Blocker #1: Procedure Calls

 Procedure to convert string to lower case

/* My version of strlen */
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

O(n)

O(n2) instead of O(n)

© Markus Püschel
Computer Science

Improving Performance

 Move call to strlen outside of loop

 Since result does not change from one iteration to another

 Form of code motion/precomputation

void lower(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

© Markus Püschel
Computer Science

Optimization Blocker: Procedure Calls

 Why couldn’t compiler move strlen out of inner loop?

 Procedure may have side effects

 Compiler usually treats procedure call as a black box that cannot be
analyzed

 Consequence: conservative in optimizations

 In this case the compiler may actually do it if strlen is recognized as
built-in function

© Markus Püschel
Computer Science

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Optimization Blocker: Memory Aliasing

 Code updates b[i] (= memory access) on every iteration

/* Sums rows of n x n matrix a
 and stores in vector b */
void sum_rows1(double *a, double *b, int n) {
 int i, j;

 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

a

b

Σ

© Markus Püschel
Computer Science

Optimization Blocker: Memory Aliasing
/* Sums rows of n x n matrix a
 and stores in vector b */
void sum_rows1(double *a, double *b, int n) {
 int i, j;

 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

a

b

Σ

/* Sums rows of n x n matrix a
 and stores in vector b */
void sum_rows2(double *a, double *b, int n) {
 int i, j;

 for (i = 0; i < n; i++) {
 double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];
 b[i] = val;
 }
}

Does compiler optimize this?
No!
Why?

© Markus Püschel
Computer Science

Reason: Possible Memory Aliasing

 If memory is accessed, compiler assumes the possibility of side effects

 Example:

double A[9] =
 { 0, 1, 2,
 4, 8, 16},
 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

/* Sums rows of n x n matrix a
 and stores in vector b */
void sum_rows1(double *a, double *b, int n) {
 int i, j;

 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

© Markus Püschel
Computer Science

Removing Aliasing

 Scalar replacement:

 Copy array elements that are reused into temporary variables

 Perform computation on those variables

 Enables register allocation and instruction scheduling

 Assumes no memory aliasing (otherwise possibly incorrect)

/* Sums rows of n x n matrix a
 and stores in vector b */
void sum_rows2(double *a, double *b, int n) {
 int i, j;

 for (i = 0; i < n; i++) {
 double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];
 b[i] = val;
 }
}

© Markus Püschel
Computer Science

Optimization Blocker: Memory Aliasing

 Memory aliasing:
Two different memory references write to the same location

 Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

 Hard to analyze = compiler cannot figure it out

 Hence is conservative

 Solution: Scalar replacement in innermost loop

 Copy memory variables that are reused into local variables

 Basic scheme:

Load: t1 = a[i], t2 = b[i+1], ….

Compute: t4 = t1 * t2; ….

Store: a[i] = t12, b[i+1] = t7, …

© Markus Püschel
Computer Science

More Difficult Example

 Which array elements are reused?

 All of them! But how to take advantage?

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices c = a*b + c */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;

 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n + k]*b[k*n + j];
}

a b

i

j

*

c

=
c

+

© Markus Püschel
Computer Science

Step 1: Blocking (Here: 2 x 2)

Blocking, also called tiling = partial unrolling + loop exchange
Assumes associativity (= compiler will not do it)

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices c = a*b + c */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;

 for (i = 0; i < n; i+=2)
 for (j = 0; j < n; j+=2)
 for (k = 0; k < n; k+=2)
 for (i1 = i; i1 < i+2; i1++)
 for (j1 = j; j1 < j+2; j1++)
 for (k1 = k; k1 < k+2; k1++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

© Markus Püschel
Computer Science

Step 2: Unrolling Inner Loops

 Every array element a[…], b[…],c[…] used twice

 Now scalar replacement can be applied
(so again: loop unrolling is done with a purpose)

<body>:
c[i*n + j] = a[i*n + k]*b[k*n + j] + a[i*n + k+1]*b[(k+1)*n + j]
 + c[i*n + j]
c[(i+1)*n + j] = a[(i+1)*n + k]*b[k*n + j] + a[(i+1)*n + k+1]*b[(k+1)*n + j]
 + c[(i+1)*n + j]
c[i*n + (j+1)] = a[i*n + k]*b[k*n + (j+1)] + a[i*n + k+1]*b[(k+1)*n + (j+1)]
 + c[i*n + (j+1)]
c[(i+1)*n + (j+1)] = a[(i+1)*n + k]*b[k*n + (j+1)]
 + a[(i+1)*n + k+1]*b[(k+1)*n + (j+1)] + c[(i+1)*n + (j+1)]

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices c = a*b + c */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;

 for (i = 0; i < n; i+=2)
 for (j = 0; j < n; j+=2)
 for (k = 0; k < n; k+=2)
 <body>
}

© Markus Püschel
Computer Science

Can Compiler Remove Aliasing?

for (i = 0; i < n; i++)
 a[i] = a[i] + b[i];

Potential aliasing: Can compiler do something about it?

Compiler can insert runtime check:

if (a + n < b || b + n < a)
 /* further optimizations may be possible now */
 ...
else
 /* aliased case */
 ...

© Markus Püschel
Computer Science

Removing Aliasing With Compiler

 Globally with compiler flag:

 -fno-alias, /Oa

 -fargument-noalias, /Qalias-args- (function arguments only)

 For one loop: pragma

 For specific arrays: restrict (needs compiler flag –restrict, /Qrestrict)

void add(float *a, float *b, int n) {
 #pragma ivdep
 for (i = 0; i < n; i++)
 a[i] = a[i] + b[i];
}

void add(float *restrict a, float *restrict b, int n) {
 for (i = 0; i < n; i++)
 a[i] = a[i] + b[i];
}

© Markus Püschel
Computer Science

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

© Markus Püschel
Computer Science

Summary

 One can easily loose 10x, 100x in runtime or even more

 What matters besides operation count:

 Coding style (unnecessary procedure calls, unrolling, reordering, …)

 Algorithm structure (instruction level parallelism, locality, …)

 Data representation (complicated structs or simple arrays)

20x
4x SSE

4x threading

© Markus Püschel
Computer Science

Summary: Optimize at Multiple Levels

 Algorithm:

 Evaluate different algorithm choices

 Restructuring may be needed (ILP, locality)

 Data representations:

 Careful with overhead of complicated data types

 Best are arrays

 Procedures:

 Careful with overhead

 They are black boxes for the compiler

 Loops:

 Often need to be restructured (ILP, locality)

 Unrolling often necessary to enable other optimizations

 Watch the innermost loop bodies

© Markus Püschel
Computer Science

Numerical Functions

 Use arrays if possible

 Unroll to some extent

 To make ILP explicit

 To enable scalar replacement and hence register allocation for variables
that are reused

