
How to Write Fast Numerical Code
Spring 2012
Lecture 2

Instructor: Markus Püschel

TA: Georg Ofenbeck

© Markus Püschel
Computer Science

Technicalities

 Research project: Let me know

 if you know with whom you will work

 if you have already a project idea

 current status: on the web

 Deadline: March 7th

 Email for questions: fastcode@lists.inf.ethz.ch

 use for all technical questions

 received by me and the Tas = ensures timely answer

mailto:fastcode@lists.inf.ethz.ch

© Markus Püschel
Computer Science

Last Time

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

This Course

© Markus Püschel
Computer Science

Today

 Problem and Algorithm

 Asymptotic analysis

 Cost analysis

 Standard book: Introduction to Algorithms (2nd edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

© Markus Püschel
Computer Science

Problem

 Problem: Specification of the relationship between a given input and
a desired output

 Numerical problems (this class): In- and Output are numbers
(or lists, vectors, arrays, … of numbers)

 Examples
 Compute the discrete Fourier transform of a given vector x of length n

 Matrix-matrix multiplication (MMM)

 Compress an n x n image with a ratio …

 Sort a given list of integers

 Multiply by 5, y = 5x, using only additions and shifts

© Markus Püschel
Computer Science

Algorithm

 Algorithm: A precise description of a sequence of steps to solve a
given problem.

 Numerical algorithms: These steps involve arithmetic computation
(additions, multiplications, …)

 Examples:
 Cooley-Tukey fast Fourier transform

 A description of MMM by definition

 JPEG encoding

 Mergesort

 y = x<<2 + x

© Markus Püschel
Computer Science

Tips for Presenting and Publishing

 If your topic is an algorithm, you must first:

 Give a formal problem specification, like:
Given …..; We want to compute……
or
Input: ……; Output: …..

 Analyze the algorithm, at least asymptotic runtime in O-notation

© Markus Püschel
Computer Science

Asymptotic Analysis of Algorithms & Problems

 Analysis of Algorithms for

 Runtime

 Space = memory requirement (or footprint)

 Runtime of an algorithm:

 Count “elementary” steps
(for numerical algorithms: usually floating point operations)
dependent on the input size n (more parameters may be necessary)

 State result in O-notation

 Example MMM (square and rectangular): C = A*B + C

 Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms

 Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

© Markus Püschel
Computer Science

Valid?

 Is asymptotic analysis still valid given this?

 Memory: yes, if the algorithm is O(f(n)), all memory effects are O(f(n))

 Vectorization, parallelization may introduce additional parameters

 Vector length ν

 Number of processors p

 Example: MMM

© Markus Püschel
Computer Science

Reminder: Do You Know The O?

 O(f(n)) is a … ?

 How are these related?

 O(f(n))

 Θ(f(n))

 Ω((f(n))

 O(2n) = O(3n)?

 O(log2(n)) = O(log3(n))

 O(n2 + m) = O(n2)?

Θ(f(n) = Ω(f(n)) ∩ O(f(n))

set

no

yes

no

© Markus Püschel
Computer Science

Always Use Canonical Expressions

 Example:

 not O(2n + log(n)), but

 Canonical? If not replace:

 O(100)

 O(log2(n))

 Θ(n1.1 + n log(n))

 2n + O(log(n))

 O(2n) + log(n)

 Ω(n log(m) + m log(n))

O(n)

O(1)

O(log(n))

O(n1.1)

O(n)

yes

yes

© Markus Püschel
Computer Science

Master Theorem: Divide-And Conquer Algorithms

Recurrence

Solution

Stays valid if n/b is replaced by its floor or ceiling

Runtime for problem size n

a subproblems of size n/b

Cost of conquer step

© Markus Püschel
Computer Science

Asymptotic Analysis: Limitations

 Θ(f(n)) describes only the eventual shape of the runtime

 Constants matter

 n2 is likely better than 1000n2

 10000000000n is likely worse than n2

 But remember: even exact op count ≠ runtime

size n

runtime

?

?

?

© Markus Püschel
Computer Science

Refined Analysis for Numerical Problems

 Goal: determine exact “cost” of an algorithm

 Approach (use MMM as running example):
 Fix an appropriate cost measure C: “what do I count”

 Determine cost of algorithm as function C(n) of input size n, or, more
generally, of all relevant input parameters:

C(n1,..,nk)

 Cost can be multi-dimensional

C(n1,..,nk) = (c1,..,cm)

 Exact cost is:
 More precise than asymptotic runtime

 Absolutely not the exact runtime

 Example cost measures:
 #floating point operations

 (#floating point adds, #floating point mults)

© Markus Püschel
Computer Science

Why Cost Analysis?

 Enables performance analysis

 Upper bound through machine’s peak performance

Peak performance
of this computer

© Markus Püschel
Computer Science

Cost Analysis: How To Do

 In this class: Cost usually given by floating point ops

 Count in algorithm or code

 Divide-and-conquer algorithm/code: Solve recurrence

 Easy case: formula (blackboard)

 More involved cases: Graham, Knuth, Patashnik, “Concrete Mathematics,”
2nd edition, Addison Wesley 1994

 If not possible

 Instrument code

 Use performance counters

