How to Write Fast Numerical Code

Spring 2012
Lecture 2

Instructor: Markus Püschel

TA: Georg Ofenbeck

EH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Technicalities

- Research project: Let me know
- if you know with whom you will work
- if you have already a project idea
- current status: on the web
- Deadline: March $7^{\text {th }}$
- Email for questions: fastcode@lists.inf.ethz.ch
- use for all technical questions
- received by me and the Tas = ensures timely answer

Last Time

Today

- Problem and Algorithm
- Asymptotic analysis
- Cost analysis

■ Standard book: Introduction to Algorithms (2 ${ }^{\text {nd }}$ edition), Corman, Leiserson, Rivest, Stein, McGraw Hill 2001)

Problem

- Problem: Specification of the relationship between a given input and a desired output
- Numerical problems (this class): In- and Output are numbers (or lists, vectors, arrays, ... of numbers)
- Examples
- Compute the discrete Fourier transform of a given vector x of length n
- Matrix-matrix multiplication (MMM)
- Compress an $\mathrm{n} \times \mathrm{n}$ image with a ratio ...
- Sort a given list of integers
- Multiply by $5, y=5 x$, using only additions and shifts

Algorithm

- Algorithm: A precise description of a sequence of steps to solve a given problem.
- Numerical algorithms: These steps involve arithmetic computation (additions, multiplications, ...)
- Examples:
- Cooley-Tukey fast Fourier transform
- A description of MMM by definition
- JPEG encoding
- Mergesort
- $y=x \ll 2+x$

Tips for Presenting and Publishing

- If your topic is an algorithm, you must first:
- Give a formal problem specification, like:

Given; We want to compute......
or
Input:; Output:

- Analyze the algorithm, at least asymptotic runtime in O-notation

Asymptotic Analysis of Algorithms \& Problems

- Analysis of Algorithms for
- Runtime
- Space = memory requirement (or footprint)
- Runtime of an algorithm:
- Count "elementary" steps (for numerical algorithms: usually floating point operations) dependent on the input size n (more parameters may be necessary)
- State result in O-notation
- Example MMM (square and rectangular): $\mathrm{C}=\mathrm{A} * \mathrm{~B}+\mathrm{C}$
- Runtime complexity of a problem = Minimum of the runtimes of all possible algorithms
- Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

Valid?

- Is asymptotic analysis still valid given this?

- Memory: yes, if the algorithm is $\mathbf{O}(f(\mathrm{n}))$, all memory effects are $\mathbf{O}(\mathrm{f}(\mathrm{n}))$
- Vectorization, parallelization may introduce additional parameters
- Vector length v
- Number of processors p
- Example: MMM

Reminder: Do You Know The O?

- $O(f(n))$ is a ... ?
- How are these related?
- O(f(n))
- $\Theta(f(n))$
- $\Omega((f(n))$
- $O\left(2^{n}\right)=O\left(3^{n}\right)$?
- $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)=\mathrm{O}\left(\log _{3}(\mathrm{n})\right)$
- $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{m}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)$?
set

$$
\Theta(f(n)=\Omega(f(n)) \cap O(f(n))
$$

no
yes
no

Always Use Canonical Expressions

- Example:
- not $\mathrm{O}(2 \mathrm{n}+\log (\mathrm{n}))$, but $\mathrm{O}(\mathrm{n})$
- Canonical? If not replace:
- O(100)
- O($\left.\log _{2}(n)\right)$
- $\Theta\left(\mathrm{n}^{1.1}+\mathrm{n} \log (\mathrm{n})\right)$
- $2 n+O(\log (n))$
- $O(2 n)+\log (n)$
- $\Omega(\mathrm{n} \log (\mathrm{m})+\mathrm{m} \log (\mathrm{n}))$

O(1)
$\mathrm{O}(\log (\mathrm{n}))$
$\mathrm{O}\left(\mathrm{n}^{1.1}\right)$
yes
$\mathrm{O}(\mathrm{n})$
yes

Master Theorem: Divide-And Conquer Algorithms

Recurrence

Solution

$$
T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right), & f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \text { for some } \epsilon>0 \\ \Theta\left(n^{\log _{b} a} \log (n)\right), & f(n)=\Theta\left(n^{\log _{b}(a)}\right) \\ \Theta(f(n)), & f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \text { for some } \epsilon>0\end{cases}
$$

Stays valid if n / b is replaced by its floor or ceiling

Asymptotic Analysis: Limitations

- $\Theta(f(n))$ describes only the eventual shape of the runtime

■ Constants matter

- n^{2} is likely better than $1000 \mathrm{n}^{2}$
- 10000000000n is likely worse than n^{2}
- But remember: even exact op count \neq runtime

Refined Analysis for Numerical Problems

- Goal: determine exact "cost" of an algorithm
- Approach (use MMM as running example):
- Fix an appropriate cost measure C: "what do I count"
- Determine cost of algorithm as function $C(n)$ of input size n, or, more generally, of all relevant input parameters:

$$
\mathrm{C}\left(\mathrm{n}_{1}, . ., \mathrm{n}_{\mathrm{k}}\right)
$$

- Cost can be multi-dimensional

$$
C\left(n_{1}, . ., n_{k}\right)=\left(c_{1}, . ., c_{m}\right)
$$

■ Exact cost is:

- More precise than asymptotic runtime
- Absolutely not the exact runtime
- Example cost measures:
- \#floating point operations
- (\#floating point adds, \#floating point mults)

Why Cost Analysis?

- Enables performance analysis
- Upper bound through machine's peak performance

Matrix-Matrix Multiplication (MMM) on $2 \times$ Core 2 Duo 3 GHz
Gflop/s

Cost Analysis: How To Do

- In this class: Cost usually given by floating point ops
- Count in algorithm or code
- Divide-and-conquer algorithm/code: Solve recurrence
- Easy case: formula (blackboard)
- More involved cases: Graham, Knuth, Patashnik, "Concrete Mathematics," $2^{\text {nd }}$ edition, Addison Wesley 1994
- If not possible
- Instrument code
- Use performance counters

