
263-2300-00: How To Write Fast Numerical Code
Assignment 5: 100 points

Due Date: Thu April 5 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/course.html

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. (Mini-MMM 65 pts) Code needed
The goal of this exercise is to implement a high performance mini-MMM (similar to how ATLAS
optimizes it) to multiply two square NB ×NB matrices (NB is a parameter), which is then used within
MMM in problem 2.

(a) (By definition) Implement the code that implements MMM directly based on its definition (triple
loop implementation), using the ijk loop order. Call this code0. We view this code as imple-
menting a mini-MMM.

(b) (Register blocking) Block into micro-MMMs with MU = NU = 2, KU = 1. The inner triple loop
must have the kij order, as explained in class. Manually unroll the innermost i- and j-loop and
perform scalar replacement on this unrolled code and write SSA code. Call this code1.

(c) (Unrolling) Unroll the innermost k-loop by a factor of 2 (KU = 2, which doubles the loop body)
and again do scalar replacement (SSA code). Note that the MU×NU block of the resulting matrix
is loaded only once outside the innermost k-loop (as explained in class). Assume that 4 divides
NB . This part gives you code2.

(d) (Alternative micro-MMM, following the x86 extended model from class) Now block code0 for
mini-MMM into micro-MMMs with MU = 1, NU = 8, KU = 2. Again, unroll the innermost k,i,j
loops and do scalar replacement with SSA. This part gives you code3.

(e) (Best block size NB) Determine the L1 data cache size C1 in doubles and its block size B1, also
in doubles. Use the model (inequality) from class (section 2e in the MMM optimization notes)
to determine the best (largest) block size NB for each: code1, code2, code3. Run these three
for this block size and report the performance obtained (three numbers) in Gflop/s. Which one
is best?

(f) (Blocking for L2 cache) Now go through the same steps as in the previous part, but this time
considering your L2 cache. Measure and report the three performance numbers.

Your best mini-MMM is the code plus block size that achieved the highest performance among the six
in parts 1e and 1f

2. MMM (15 pts) Implement an MMM for multiplying two square n×n matrices assuming NB divides n,
blocked into NB×NB blocks using your best mini-MMM code from exercise 1. This is your finalcode.
Create a performance plot comparing this code and code0 (by definition) above for sizes roughly in
the range n = 100, . . . , 1500 in steps of roughly 100 (the exact numbers will depend on the NB you
found since you want multiples of NB). The x-axis shows n; the y-axis performance in Mflop/s or
Gflop/s. Briefly discuss the plot.

3. Roofline (15 pts) Using the microarchitecture parameters from lecture 3, draw a roofline plot for double
precision floating point operations on a Core i7 with AVX. The units for x-axis and y-axis are flops/byte
and flops/cycle, respectively. Specifically, the plot should contain 4 lines:

(a) Upper bound based on peak performance with AVX

(b) Upper bound based on scalar peak performance

(c) Upper bound based on the maximal memory bandwidth

(d) Upper bound based on the maximal bandwidth achievable without spatial locality (e.g., random
access of doubles in a very large array)

263-2300-00 SS12 / Assignment 5
Instructor: Markus Püschel

Pg 1 of 2 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/homeworks/hw05files/prob1.zip


Provide enough detail (labels etc.) so we can check correctness.

Finally answer the following: What is the minimal operational intensity that a non-vectorizable com-
putation without spatial locality needs to have to be compute bound?

Solution: From the microarchitecture parameters given in lecture 3:

(a) 8 flops/cycle

(b) 2 flops/cycle

(c) Maximal memory bandwidth = 1 double/cycle = 8 bytes/cycle

(d) Maximal bandwidth achievable without spatial locality = 1
8 double/cycle = 1 byte/cycle

Note that the bandwiths always refer to off-chip data transfers. The roofline plot is provided in Fig. 1.

2-5 2-4 2-3 2-2 2-1 20 21 22 23 24 25 26 27

Operational intensity [flops/byte]

2-6

2-4

2-2

20

22

24

26

28

210

Pe
rfo

rm
an

ce
 [f

lo
ps

/c
yc

le
]

3.a

3.b

3.c

3.d

Final answer

Figure 1: Upper bound roofline plot for double precision floating point operations on the Core i7 with AVX.

263-2300-00 SS12 / Assignment 5
Instructor: Markus Püschel

Pg 2 of 2 Computer Science
ETH Zurich


