General radix, recursive Cooley-lukey FFT
assume $u=K \mathrm{Km}$

3 key structures: $I_{k} \otimes A_{m}, A_{K} \otimes I_{n}, L_{K}^{n}$
1.) $y=\left(I_{4} \otimes A_{n}\right) x$

$$
\left(\begin{array}{l}
\prime \\
\end{array}\right)=\left(\begin{array}{lll}
A & & \\
& A & \\
& & \ddots
\end{array}\right)\left(\begin{array}{l}
\prime \\
\\
\\
\end{array}\right)
$$

for $i=0: k-1$

$$
\left.\begin{array}{ll}
i \\
y \cdot x[i m: 1: i m+m-1] \\
\end{array}\right]
$$

r. A^{\prime} 's at stride 1

$$
=A \cdot x i
$$

2) $y=\left(A_{k} \oplus I_{m}\right) x$

$$
\left(\begin{array}{l}
0 \\
\vdots \\
\vdots
\end{array}\right)=\left(\begin{array}{ccc}
a & a & a \\
a & a & \cdots \\
a & a & \cdots \\
\vdots & &
\end{array}\right)\left(\begin{array}{l}
n \\
\vdots \\
\vdots
\end{array}\right)
$$

for $i=0: m-1$

$$
\begin{aligned}
& \text { for } i=0: m-1 \\
& y[i: m: i+(k-1) m] \\
& A \cdot x[\quad 4
\end{aligned}
$$

$m A^{\prime}$'s at stride m
3.) $y=L_{k}^{n} x$: different ways of viewing it
a.) view x as $m \times k$ matrix:

transposition!
b.) L_{k}^{4} "reads at stride l X^{\prime} stride $1 \rightarrow m$ and cortes at stride m "is the same as
c.) L_{k}^{4} performs permutation $i m+j \rightarrow j k+i \quad \begin{array}{ll}0 \leq i<k \\ 0 \leq j<m\end{array}$

FFT again:

$$
\Delta F T_{k m}=(\underbrace{\lambda F T_{k} \otimes I_{n}}_{\substack{\text { strode } \\ m \rightarrow m}}) T_{m}^{n}(\underbrace{I_{k} \otimes \lambda F T_{m}}_{\substack{\text { sd ride } \\ 1 \rightarrow 1}}) \underbrace{L_{k}^{4}}_{\substack{\text { strode } \\ 1 \rightarrow m \text { stride } \\ \text { stride same as } k \rightarrow 1}}
$$

this is the "dectmation-in-time" version

Decimation in frequency: vranspose:
Use: $-\partial F T$ is symmetric

$$
\begin{aligned}
& -\binom{n}{k}^{\top}=L_{m}^{n} \\
& -(A \otimes B)^{\top}=A^{\top} \otimes B^{\top}
\end{aligned}
$$

Gives:

$$
\partial F T_{k n}=L_{m}^{n}\left(I_{k} \otimes \lambda F T_{m}\right) T_{m}^{n}\left(\lambda F T_{k} \otimes I_{m}\right)
$$

Cost analysis: (was in exam for radix 2), assume $u=\alpha$ Measure: (complex adds, complex melt)
Cost: independent of rall $\left(n \log _{2}(n), \frac{1}{2} n \log _{2}(n)\right)$ complex add $=2$ real adds $"$ molt $\leqslant 4$ real molts 2 real adds

$$
\Rightarrow \text { real } \cos \alpha \leq 2 n \log _{2}(n)+3 n \log _{2}(n)=5 n \log _{2}(n)
$$

Herative radix- 2 FFT

Most people consider this "the FFT"

