How to Write Fast Numerical Code

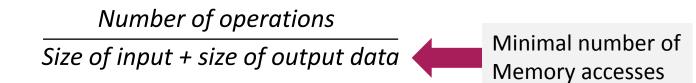
Spring 2011 Lecture 15

Instructor: Markus Püschel TA: Georg Ofenbeck

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Reuse Again

Reuse of an algorithm:



Examples:

Matrix multiplication C = AB + C

$$\frac{2n^3}{3n^2} = \frac{2}{3}n = O(n)$$

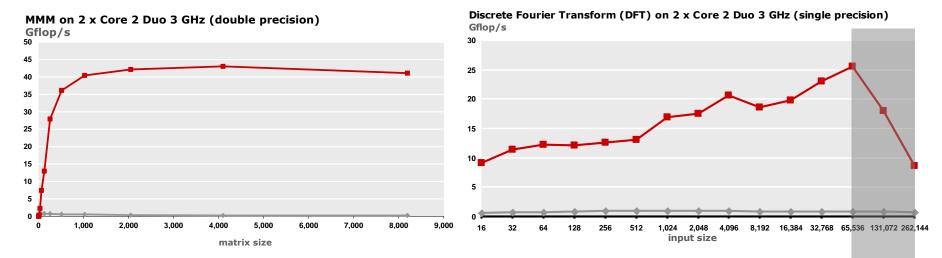
Discrete Fourier transform

$$\approx \frac{5n\log_2(n)}{2n} = \frac{5}{2}\log_2(n) = O(\log(n))$$

$$\frac{n}{2n} = \frac{1}{2} = O(1)$$

Effects

MMM: O(n) reuse



FFT: O(log(n)) reuse

Performance maintained even when data does not fit into caches

Drop will happen once data does not fit into main memory

Performance drop when data does not fit into largest cache

Outside cache: Runtime only determined by memory accesses (memory bound)

Memory Bound Computation

- Typically: Computations with O(1) reuse
- Performance bound based on data traffic may be tighter than performance bound obtained by op count

Example

Vector addition: z = x + y on Core 2

```
void vectorsum(double *x, double *y, double *z, int n)
{
    int i;
    for (i = 0; i < n; i++)
        z[i] = x[i] + y[i];
}</pre>
```

Core 2:

- Peak performance (no SSE):
- Throughput L1 cache:
- Throughput L2 cache:
- Throughput Main memory:

Resulting bounds

Reuse: 1/3

Example

Vector addition: z = x + y on Core 2

```
void vectorsum(double *x, double *y, double *z, int n)
{
    int i;
    for (i = 0; i < n; i++)
        z[i] = x[i] + y[i];
}</pre>
```

Core 2:

- Peak performance (no SSE): 1 add/c
- Throughput L1 cache:
- Throughput L2 cache:
- Throughput Main memory:

Resulting bounds

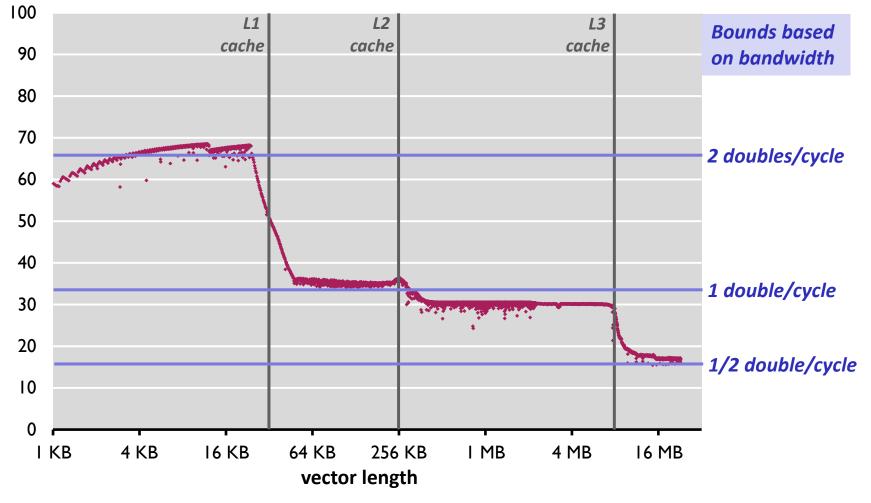
Reuse: 1/3

1 add/cycle	n cycles
2 doubles/cycle	3/2 n cycles
1 doubles/cycle	3n cycles
¼ doubles/cycle	12 n cycles

Memory-Bound Computation

z = x + y on Core i7 (one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

Percentage peak performance (peak = 1 add/cycle)



Today

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop

References:

- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.; Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

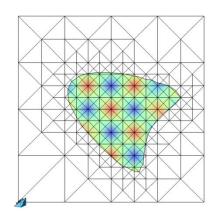
Sparse Linear Algebra

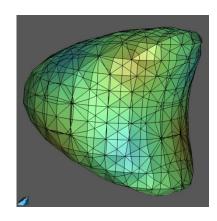
Very different characteristics from dense linear algebra (LAPACK etc.)

Applications:

- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming
- scheduling
- signal processing (e.g., filters)
- …

Core building block: Sparse MVM

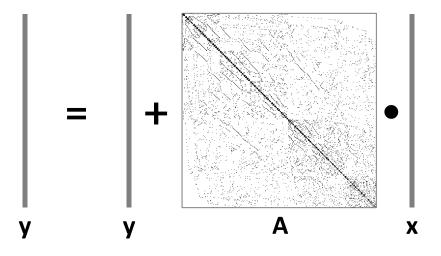




Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/ projects/unfitted-meshes_en.html

Sparse MVM (SMVM)

y = y + Ax, A sparse but known



- Typically executed many times for fixed A
- What is reused?
- Reuse dense versus sparse MVM?

Storage of Sparse Matrices

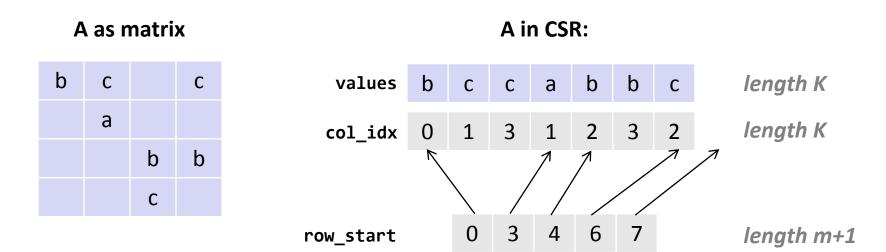
Standard storage is obviously inefficient

- Many zeros are stored
- As a consequence, reuse is decreased
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
 - blackboard

CSR

Assumptions:

- A is m x n
- K nonzero entries



Storage: Θ(max(K, m)), typically Θ(K)

Sparse MVM Using CSR

y = y + Ax

```
void smvm(int m, const double* value, const int* col_idx,
          const int* row_start, const double* x, double* y)
{
  int i, j;
  double d;
 /* loop over rows */
  for (i = 0; i < m; i++) {</pre>
    d = y[i]; /* scalar replacement since reused */
    /* loop over non-zero elements in row i */
    for (j = row_start[i]; j < row_start[i+1]; j++, col_idx++, value++) {</pre>
      d += value[j] * x[col idx[j]];
    }
    y[i] = d;
  }
}
```

CSR + sparse MVM: Advantages?

CSR

Advantages:

- Only nonzero values are stored
- All arrays are accessed consecutively in MVM (spatial locality)

Disadvantages:

- x is not reused
- Insertion costly

Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
 - 2x slower (Mflop/s, example only)
- Irregular structure
 - ~ 5x slower (Mflop/s, example only) for "random" sparse matrices

Fundamental difference between MVM and sparse MVM (SMVM):

- Sparse MVM is input *dependent* (sparsity pattern of A)
- Changing the order of computation (blocking) requires changing the data structure (CSR)

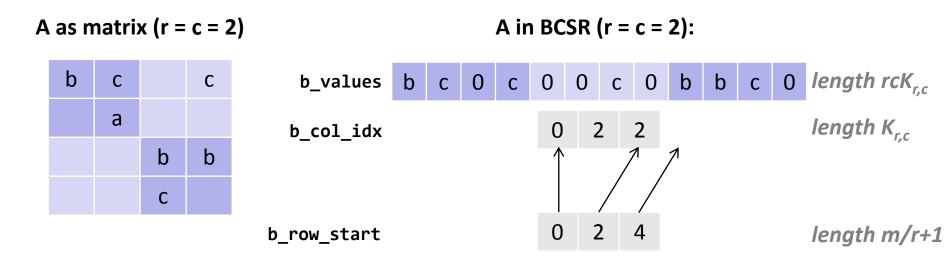
Bebop/Sparsity: SMVM Optimizations

- Idea: Register blocking
- **Reason:** Reuse x to reduce memory traffic
- Execution: Block SMVM y = y + Ax into micro MVMs
 - Block size r x c becomes a parameter
 - Consequence: Change A from CSR to r x c block-CSR (BCSR)
- BCSR: Blackboard

BCSR (Blocks of Size r x c)

Assumptions:

- A is m x n
- Block size r x c
- K_{r,c} nonzero blocks



Storage:
$$\Theta(rcK_{r,c})$$
, $rcK_{r,c} \ge K$

Sparse MVM Using 2 x 2 BCSR

```
void smvm 2x2(int bm, const int *b_row_start, const int *b_col_idx,
              const double *b value, const double *x, double *y)
{
 int i, j;
 double d0, d1, c0, c1;
 /* loop over block rows */
 for (i = 0; i < bm; i++, y += 2) {</pre>
   d0 = y[i]; /* scalar replacement */
   d1 = y[i+1];
   /* dense micro MVM */
   for (j = b row start[i]; j < b row start[i+1]; j++, b col idx++, b value += 2*2) {
      c0 = x[b col idx[j]+0]; /* scalar replacement */
     c1 = x[b col idx[j]+1];
     d0 += b_value[0] * c0;
     d1 += b value[2] * c0;
     d0 += b value[1] * c1;
      d1 += b value[3] * c1;
    }
   y[i] = d0;
   y[i+1] = d1;
```

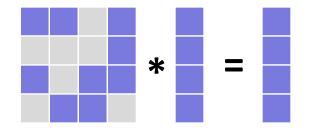
BCSR

Advantages:

- Reuse of x and y (same as for dense MVM)
- Reduces storage for indexes

Disadvantages:

- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

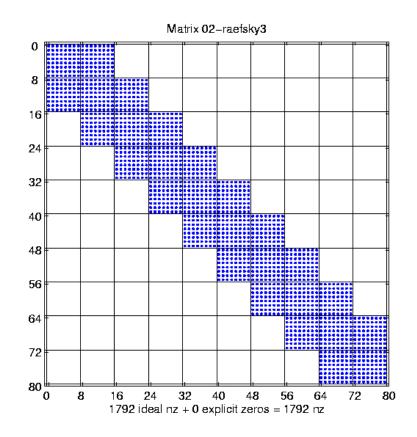


Main factors (since memory bound):

- *Plus:* increased reuse on x + reduced index storage
 = reduced memory traffic
- Minus: more zeros = increased memory traffic

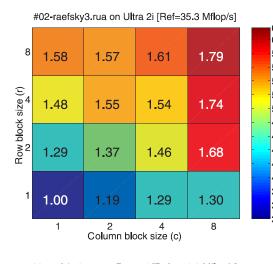
Which Block Size (r x c) is Optimal?

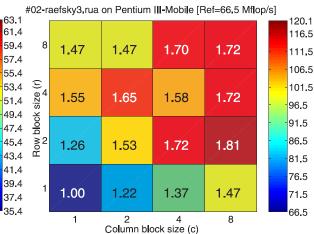
- Example: about 20,000 x 20,000 matrix with perfect 8 x 8 block structure, 0.33% non-zero entries
- In this case: No overhead when blocked r x c, with r,c divides 8



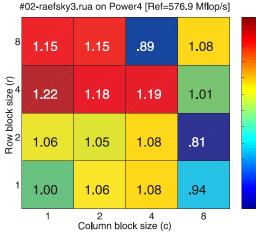
source: R. Vuduc, LLNL

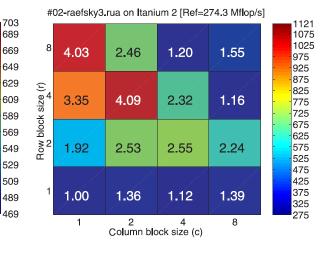
Speed-up through r x c Blocking





- machine dependent
- hard to predict





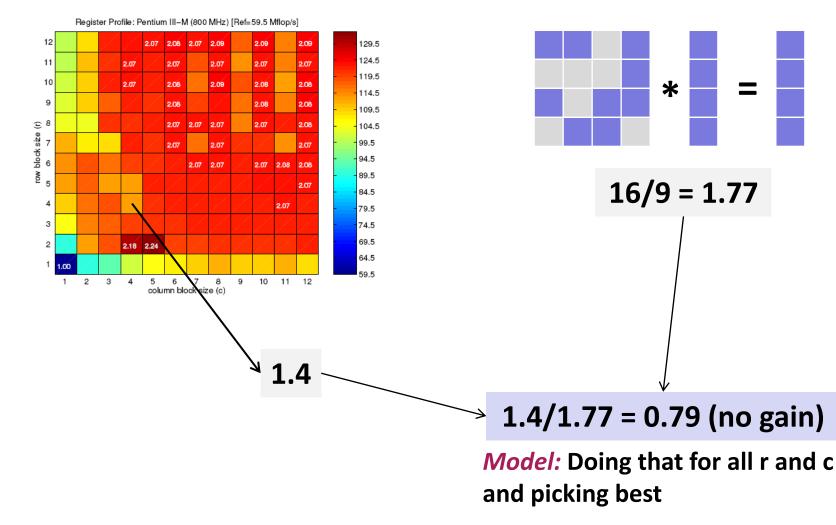
Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- **Solution 1:** Searching over all r x c within a range, e.g., $1 \le r,c \le 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive
- Solution 2: Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio

Model: Example

Gain by blocking (dense MVM)



Overhead (average) by blocking

Model

- Goal: find best r x c for y = y + Ax
- Gain through r x c blocking (estimation):

 $G_{r,c} = \frac{dense \ MVM \ performance \ in \ r \ x \ c \ BCSR}{dense \ MVM \ performance \ in \ CSR}$

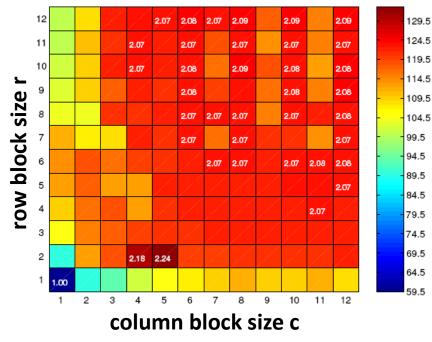
- dependent on machine, independent of sparse matrix
- Overhead through r x c blocking (estimation)
 - scan part of matrix A

O_{r,c} = *number of matrix values in r x c BCSR number of matrix values in CSR*

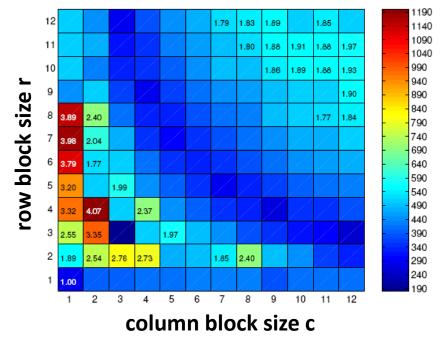
independent of machine, dependent on sparse matrix

Gain from Blocking (Dense Matrix in BCSR)

Pentium III



Itanium 2



- machine dependent
- hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. *SPARSITY: An Optimization Framework for Sparse Matrix Kernels*, *Int'l Journal of High Performance Comp. App.*, 18(1), pp. 135-158, 2004

Typical Result

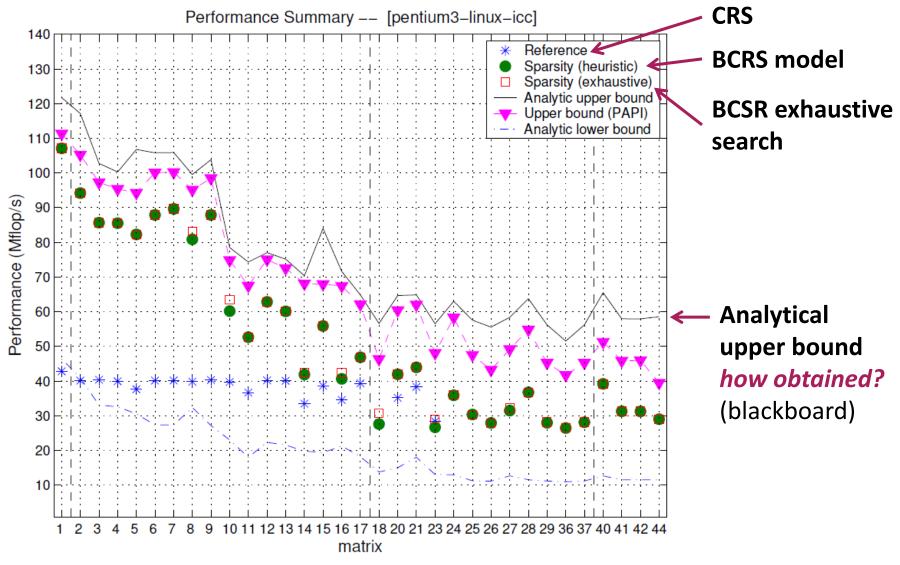


Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. *SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App.*, 18(1), pp. 135-158, 2004