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Reuse Again 

 Reuse of an algorithm: 

 

 

 

 

 Examples: 

 Matrix multiplication C = AB + C 

 

 Discrete Fourier transform 

 

 Adding two vectors x = x+y 

Number of operations 

Size of input + size of output data 

2n3

3n2
= 2

3
n = O(n)

¼ 5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

n
2n

= 1
2
= O(1)

Minimal number of 
Memory accesses 



Effects 
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MMM: O(n) reuse 

Performance maintained even when data 
does not fit into caches 
 
Drop will happen once data does not fit into 
main memory 
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FFT: O(log(n)) reuse 

Performance drop when data does not fit 
into largest cache 
 
Outside cache: Runtime only determined by 
memory accesses (memory bound) 



Memory Bound Computation 

 Typically: Computations with O(1) reuse 

 Performance bound based on data traffic may be tighter than 
performance bound obtained by op count 



Example 

 Vector addition: z = x + y on Core 2 

 

 

 

 

 

 Core 2:     Resulting bounds 

 Peak performance (no SSE):  1 add/cycle n cycles 

 Throughput L1 cache: 2 doubles/cycle 2/3 n cycles 

 Throughput L2 cache: 1 doubles/cycle 1/3 n cycles 

 Throughput Main memory: ¼ doubles/cycle 1/12 n cycles 

 

void vectorsum(double *x, double *y, double *z, int n) 
{ 
  int i; 
 
  for (i = 0; i < n; i++) 
    z[i] = x[i] + y[i]; 
} 

Reuse: 1/3 



Example 

 Vector addition: z = x + y on Core 2 

 

 

 

 

 

 Core 2:     Resulting bounds 

 Peak performance (no SSE):  1 add/cycle n cycles 

 Throughput L1 cache: 2 doubles/cycle 3/2 n cycles 

 Throughput L2 cache: 1 doubles/cycle 3n cycles 

 Throughput Main memory: ¼ doubles/cycle 12 n cycles 

 

void vectorsum(double *x, double *y, double *z, int n) 
{ 
  int i; 
 
  for (i = 0; i < n; i++) 
    z[i] = x[i] + y[i]; 
} 

Reuse: 1/3 



Memory-Bound Computation 
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Today 

 Sparse matrix-vector multiplication (MVM) 

 Sparsity/Bebop 

 

 References: 

 Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization 
Framework for Sparse Matrix Kernels, Int’l Journal of High Performance 
Comp. App., 18(1), pp. 135-158, 2004 

 Vuduc, R.;   Demmel, J.W.;   Yelick, K.A.;   Kamil, S.;   Nishtala, R.;   Lee, B.; 
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, 
pp. 26, Supercomputing, 2002 

 Sparsity/Bebop website  

 

http://bebop.cs.berkeley.edu/
http://bebop.cs.berkeley.edu/


Sparse Linear Algebra 

 Very different characteristics from dense linear algebra (LAPACK etc.) 

 Applications: 

 finite element methods 

 PDE solving 

 physical/chemical simulation  
(e.g., fluid dynamics) 

 linear programming 

 scheduling 

 signal processing (e.g., filters) 

 … 

 Core building block: Sparse MVM 

Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/ 
projects/unfitted-meshes_en.html 



Sparse MVM (SMVM) 

 y = y + Ax, A sparse but known 

 

 

 

 

 

 

 

 Typically executed many times for fixed A 

 What is reused? 

 Reuse dense versus sparse MVM?  

● = + 

y y x A 



Storage of Sparse Matrices 

 Standard storage is obviously inefficient 

 Many zeros are stored 

 As a consequence, reuse is decreased 

 Several sparse storage formats are available 

 Most popular: Compressed sparse row (CSR) format  

 blackboard 



CSR 

 Assumptions:  

 A is m x n 

 K nonzero entries 

 

 

 

 

 

 

 

 Storage: Θ(max(K, m)), typically Θ(K) 

b c c 
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A as matrix 
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A in CSR: 

length K 

length K 

length m+1 



Sparse MVM Using CSR 

void smvm(int m, const double* value, const int* col_idx,  
          const int* row_start, const double* x, double* y) 
{ 
  int i, j; 
  double d; 
 
  /* loop over rows */ 
  for (i = 0; i < m; i++) { 
    d = y[i]; /* scalar replacement since reused */ 
 
    /* loop over non-zero elements in row i */ 
    for (j = row_start[i]; j < row_start[i+1]; j++, col_idx++, value++) { 
      d += value[j] * x[col_idx[j]]; 
    } 
    y[i] = d; 
  } 
} 

y = y + Ax 

CSR + sparse MVM: Advantages? 



CSR 

 Advantages: 

 Only nonzero values are stored 

 All arrays are accessed consecutively in MVM (spatial locality) 

 Disadvantages: 

 x is not reused 

 Insertion costly 



Impact of Matrix Sparsity on Performance 

 Adressing overhead (dense MVM vs. dense MVM in CSR): 

 ~ 2x slower (Mflop/s, example only) 

 Irregular structure 

 ~ 5x slower (Mflop/s, example only) for “random” sparse matrices 

 Fundamental difference between MVM and sparse MVM (SMVM): 

 Sparse MVM is input dependent (sparsity pattern of A) 

 Changing the order of computation (blocking) requires changing the data 
structure (CSR) 



Bebop/Sparsity: SMVM Optimizations 

 Idea: Register blocking 

 Reason: Reuse x to reduce memory traffic 

 Execution: Block SMVM y = y + Ax into micro MVMs 

 Block size r x c becomes a parameter 

 Consequence: Change A from CSR to r x c block-CSR (BCSR) 

 BCSR: Blackboard 

 



BCSR (Blocks of Size r x c) 

 Assumptions:  

 A is m x n 

 Block size r x c 

 Kr,c nonzero blocks 

 

 

 

 

 

 

 

 Storage: Θ(rcKr,c), rcKr,c ≥ K 

b c c 

a 

b b 

c 

A as matrix (r = c = 2) 
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A in BCSR (r = c = 2): 

length rcKr,c 

length Kr,c 

length m/r+1 



Sparse MVM Using 2 x 2 BCSR 
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,  
      const double *b_value, const double *x, double *y) 
{ 
  int i, j; 
  double d0, d1, c0, c1; 
 
  /* loop over block rows */ 
  for (i = 0; i < bm; i++, y += 2) { 
    d0 = y[i];   /* scalar replacement */ 
    d1 = y[i+1]; 
 
    /* dense micro MVM */ 
    for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_col_idx++, b_value += 2*2) { 
      c0 = x[b_col_idx[j]+0]; /* scalar replacement */ 
      c1 = x[b_col_idx[j]+1]; 
      d0 += b_value[0] * c0; 
      d1 += b_value[2] * c0; 
      d0 += b_value[1] * c1; 
      d1 += b_value[3] * c1; 
    } 
    y[i]   = d0; 
    y[i+1] = d1; 
  } 
} 



BCSR 

 Advantages:  

 Reuse of x and y (same as for dense MVM) 

 Reduces storage for indexes 

 Disadvantages:  

 Storage for values of A increased (zeros added) 

 Computational overhead (also due to zeros) 

 

 Main factors (since memory bound): 

 Plus: increased reuse on x + reduced index storage  
= reduced memory traffic 

 Minus: more zeros = increased memory traffic 

* = 



Which Block Size (r x c) is Optimal? 

 Example: about 20,000 x 20,000 matrix with perfect 8 x 8 block 
structure, 0.33% non-zero entries 

 In this case: No overhead when blocked r x c, with r,c divides 8 

source: R. Vuduc, LLNL 



Speed-up through r x c Blocking 

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for 
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004 

• machine dependent 
• hard to predict 



How to Find the Best Blocking for given A? 

 Best block size is hard to predict (see previous slide) 

 Solution 1: Searching over all r x c within a range, e.g., 1 ≤ r,c ≤ 12 

 Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs 

 Total cost: 1440 SMVMs 

 Too expensive 

 Solution 2: Model 

 Estimate the gain through blocking 

 Estimate the loss through blocking 

 Pick best ratio 



Model: Example 

Gain by blocking (dense MVM)  Overhead (average) by blocking 

16/9 = 1.77 

1.4 

1.4/1.77 = 0.79 (no gain) 

* = 

Model: Doing that for all r and c 
and picking best 



Model 

 Goal: find best r x c for y = y + Ax 

 Gain through r x c blocking (estimation): 

 

 

 dependent on machine, independent of sparse matrix 

 Overhead through r x c blocking (estimation) 

 scan part of matrix A 

 

 

 independent of machine, dependent on sparse matrix 

 

 Expected gain: Gr,c/Or,c 

dense MVM performance in r x c BCSR 
dense MVM performance in CSR 

Gr,c = 

number of matrix values in r x c BCSR 
number of matrix values in CSR 

Or,c = 



Gain from Blocking (Dense Matrix in BCSR) 

• machine dependent 
• hard to predict 

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for 
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004 
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Typical Result 

BCRS model 

BCSR exhaustive 
search 

Analytical  
upper bound 
how obtained? 
(blackboard) 

CRS 

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for 
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004 




