How to Write Fast Numerical Code

Spring 2011
Lecture 15

Instructor: Markus Püschel

TA: Georg Ofenbeck

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Reuse Again

- Reuse of an algorithm:

$$
\frac{\text { Number of operations }}{\text { Size of input + size of output data }} \quad \begin{aligned}
& \text { Minimal number of } \\
& \text { Memory accesses }
\end{aligned}
$$

- Examples:
- Matrix multiplication $\mathrm{C}=\mathrm{AB}+\mathrm{C} \quad \frac{2 n^{3}}{3 n^{2}}=\frac{2}{3} n=O(n)$
- Discrete Fourier transform

$$
\approx \frac{5 n \log _{2}(n)}{2 n}=\frac{5}{2} \log _{2}(n)=O(\log (n))
$$

- Adding two vectors $\mathrm{x}=\mathrm{x}+\mathrm{y} \quad \frac{n}{2 n}=\frac{1}{2}=O(1)$

Effects

MMM: O(n) reuse

MMM on $2 \times$ Core 2 Duo 3 GHz (double precision)
Gflop/s

Performance maintained even when data does not fit into caches

Drop will happen once data does not fit into main memory

FFT: $O(\log (n))$ reuse

Performance drop when data does not fit into largest cache

Outside cache: Runtime only determined by memory accesses (memory bound)

Memory Bound Computation

- Typically: Computations with O(1) reuse
- Performance bound based on data traffic may be tighter than performance bound obtained by op count

Example

- Vector addition: $\mathbf{z = x + y}$ on Core 2

```
void vectorsum(double *x, double *y, double *z, int n) Reuse: 1/3
{
    int i;
    for (i = 0; i < n; i++)
        z[i] = x[i] + y[i];
}
```

- Core 2:
- Peak performance (no SSE):
- Throughput L1 cache:
- Throughput L2 cache:
- Throughput Main memory:

Resulting bounds

Example

- Vector addition: $\mathbf{z = x + y}$ on Core 2

```
void vectorsum(double *x, double *y, double *z, int n) Reuse: 1/3
{
    int i;
    for (i = 0; i < n; i++)
        z[i] = x[i] + y[i];
}
```

- Core 2:
- Peak performance (no SSE):
- Throughput L1 cache:
- Throughput L2 cache:
- Throughput Main memory:

Resulting bounds
n cycles
$3 / 2 \mathrm{n}$ cycles
1 doubles/cycle $3 n$ cycles
$1 / 4$ doubles/cycle 12 n cycles

Memory-Bound Computation

$z=x+y$ on Core i7 (one core, no SSE), icc $12.0 / 02 / f p: f a s t / Q i p o$

Today

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop
- References:
- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.; Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming

- scheduling
- signal processing (e.g., filters)
- ...
- Core building block: Sparse MVM

Sparse MVM (SMVM)

- $y=y+A x, A$ sparse but known

- Typically executed many times for fixed \mathbf{A}
- What is reused?
- Reuse dense versus sparse MVM?

Storage of Sparse Matrices

- Standard storage is obviously inefficient
- Many zeros are stored
- As a consequence, reuse is decreased
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
- blackboard

CSR

- Assumptions:
- A is $m \times n$
- K nonzero entries

A as matrix

b	c		c
	a		
		b	b
		c	

A in CSR:

- Storage: $\Theta(\max (\mathrm{K}, \mathrm{m}))$, typically $\Theta(\mathrm{K})$

Sparse MVM Using CSR

```
y=y+Ax
void smvm(int m, const double* value, const int* col_idx,
    const int* row_start, const double* x, double* y)
{
    int i, j;
    double d;
    /* loop over rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */
        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++, col_idx++, value++) {
            d += value[j] * x[col_idx[j]];
        }
        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

CSR

- Advantages:
- Only nonzero values are stored
- All arrays are accessed consecutively in MVM (spatial locality)
- Disadvantages:
- x is not reused
- Insertion costly

Impact of Matrix Sparsity on Performance

■ Adressing overhead (dense MVM vs. dense MVM in CSR):

- ~ 2x slower (Mflop/s, example only)
- Irregular structure
- ~ 5x slower (Mflop/s, example only) for "random" sparse matrices
- Fundamental difference between MVM and sparse MVM (SMVM):
- Sparse MVM is input dependent (sparsity pattern of A)
- Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

- Idea: Register blocking
- Reason: Reuse x to reduce memory traffic
- Execution: Block SMVM $\mathbf{y}=\mathbf{y}+$ Ax into micro MVMs
- Block size rxc becomes a parameter
- Consequence: Change A from CSR to rx c block-CSR (BCSR)
- BCSR: Blackboard

BCSR (Blocks of Size r x c)

- Assumptions:
- A is $m \times n$
- Block size rxc
- $\mathrm{K}_{\mathrm{r}, \mathrm{c}}$ nonzero blocks

A as matrix ($\mathrm{r}=\mathrm{c}=2$)
A in $\operatorname{BCSR}(r=c=2):$

■ Storage: $\boldsymbol{\Theta}\left(\mathrm{rcK}_{\mathrm{r}, \mathrm{c}}\right), \mathrm{rcK}_{\mathrm{r}, \mathrm{c}} \geq \mathrm{K}$

Sparse MVM Using 2×2 BCSR

```
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
                            const double *b_value, const double *x, double *y)
{
    int i, j;
    double d0, d1, c0, c1;
    /* loop over block rows */
    for (i = 0; i < bm; i++, y += 2) {
        d0 = y[i]; /* scalar replacement */
        d1 = y[i+1];
        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_col_idx++, b_value += 2*2) {
            c0 = x[b_col_idx[j]+0]; /* scalar replacement */
            c1 = x[b_col_idx[j]+1];
            d0 += b_value[0] * c0;
            d1 += b_value[2] * c0;
            d0 += b_value[1] * c1;
            d1 += b_value[3] * c1;
        }
    y[i] = d0;
    y[i+1] = d1;
    }
}
```


BCSR

- Advantages:
- Reuse of x and y (same as for dense MVM)
- Reduces storage for indexes
- Disadvantages:
- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

- Main factors (since memory bound):
- Plus: increased reuse on $x+$ reduced index storage = reduced memory traffic
- Minus: more zeros = increased memory traffic

Which Block Size (rxc) is Optimal?

- Example: about 20,000 $\times \mathbf{2 0 , 0 0 0}$ matrix with perfect 8×8 block structure, 0.33\% non-zero entries
- In this case: No overhead when blocked r x c, with r,c divides 8

Speed-up through rxc Blocking

63.1 61.4 59.4 -57.4 -55.4 -53.4 -51.4 -49.4 -47.4 -45.4 -43.4 41.4 39.4 37.4 35.4

- machine dependent
- hard to predict

How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- Solution 1: Searching over all rxc within a range, e.g., $1 \leq r, c \leq 12$
- Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
- Total cost: 1440 SMVMs
- Too expensive
- Solution 2: Model
- Estimate the gain through blocking
- Estimate the loss through blocking
- Pick best ratio

Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

$16 / 9=1.77$

Model: Doing that for all r and c and picking best

Model

- Goal: find best rxc for $\mathrm{y}=\mathrm{y}+\mathrm{Ax}$
- Gain through rxchlocking (estimation):

$$
G_{r, c}=\frac{\text { dense MVM performance in } r \times c B C S R}{\text { dense MVM performance in CSR }}
$$

- dependent on machine, independent of sparse matrix
- Overhead through rxc blocking (estimation)
- scan part of matrix A

$$
O_{r, c}=\frac{\text { number of matrix values in } r \times c B C S R}{\text { number of matrix values in } C S R}
$$

- independent of machine, dependent on sparse matrix
- Expected gain: $\mathrm{G}_{\mathrm{r}, \mathrm{c}} / \mathrm{O}_{\mathrm{r}, \mathrm{c}}$

Gain from Blocking (Dense Matrix in BCSR)

Pentium III

Itanium 2

- machine dependent
- hard to predict

Typical Result

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'I Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

