
How to Write Fast Numerical Code
Spring 2011
Lecture 15

Instructor: Markus Püschel

TA: Georg Ofenbeck

Reuse Again

 Reuse of an algorithm:

 Examples:

 Matrix multiplication C = AB + C

 Discrete Fourier transform

 Adding two vectors x = x+y

Number of operations

Size of input + size of output data

2n3

3n2
= 2

3
n = O(n)

¼ 5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

n
2n

= 1
2
= O(1)

Minimal number of
Memory accesses

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

MMM on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

MMM: O(n) reuse

Performance maintained even when data
does not fit into caches

Drop will happen once data does not fit into
main memory

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

FFT: O(log(n)) reuse

Performance drop when data does not fit
into largest cache

Outside cache: Runtime only determined by
memory accesses (memory bound)

Memory Bound Computation

 Typically: Computations with O(1) reuse

 Performance bound based on data traffic may be tighter than
performance bound obtained by op count

Example

 Vector addition: z = x + y on Core 2

 Core 2: Resulting bounds

 Peak performance (no SSE): 1 add/cycle n cycles

 Throughput L1 cache: 2 doubles/cycle 2/3 n cycles

 Throughput L2 cache: 1 doubles/cycle 1/3 n cycles

 Throughput Main memory: ¼ doubles/cycle 1/12 n cycles

void vectorsum(double *x, double *y, double *z, int n)
{
 int i;

 for (i = 0; i < n; i++)
 z[i] = x[i] + y[i];
}

Reuse: 1/3

Example

 Vector addition: z = x + y on Core 2

 Core 2: Resulting bounds

 Peak performance (no SSE): 1 add/cycle n cycles

 Throughput L1 cache: 2 doubles/cycle 3/2 n cycles

 Throughput L2 cache: 1 doubles/cycle 3n cycles

 Throughput Main memory: ¼ doubles/cycle 12 n cycles

void vectorsum(double *x, double *y, double *z, int n)
{
 int i;

 for (i = 0; i < n; i++)
 z[i] = x[i] + y[i];
}

Reuse: 1/3

Memory-Bound Computation

0

10

20

30

40

50

60

70

80

90

100

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

z = x + y on Core i7 (one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

L1
cache

L2
cache

L3
cache

2 doubles/cycle

1 double/cycle

1/2 double/cycle

vector length

Percentage peak performance (peak = 1 add/cycle)

Bounds based
on bandwidth

Today

 Sparse matrix-vector multiplication (MVM)

 Sparsity/Bebop

 References:

 Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization
Framework for Sparse Matrix Kernels, Int’l Journal of High Performance
Comp. App., 18(1), pp. 135-158, 2004

 Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
pp. 26, Supercomputing, 2002

 Sparsity/Bebop website

http://bebop.cs.berkeley.edu/
http://bebop.cs.berkeley.edu/

Sparse Linear Algebra

 Very different characteristics from dense linear algebra (LAPACK etc.)

 Applications:

 finite element methods

 PDE solving

 physical/chemical simulation
(e.g., fluid dynamics)

 linear programming

 scheduling

 signal processing (e.g., filters)

 …

 Core building block: Sparse MVM

Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/
projects/unfitted-meshes_en.html

Sparse MVM (SMVM)

 y = y + Ax, A sparse but known

 Typically executed many times for fixed A

 What is reused?

 Reuse dense versus sparse MVM?

● = +

y y x A

Storage of Sparse Matrices

 Standard storage is obviously inefficient

 Many zeros are stored

 As a consequence, reuse is decreased

 Several sparse storage formats are available

 Most popular: Compressed sparse row (CSR) format

 blackboard

CSR

 Assumptions:

 A is m x n

 K nonzero entries

 Storage: Θ(max(K, m)), typically Θ(K)

b c c

a

b b

c

A as matrix

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

length K

length K

length m+1

Sparse MVM Using CSR

void smvm(int m, const double* value, const int* col_idx,
 const int* row_start, const double* x, double* y)
{
 int i, j;
 double d;

 /* loop over rows */
 for (i = 0; i < m; i++) {
 d = y[i]; /* scalar replacement since reused */

 /* loop over non-zero elements in row i */
 for (j = row_start[i]; j < row_start[i+1]; j++, col_idx++, value++) {
 d += value[j] * x[col_idx[j]];
 }
 y[i] = d;
 }
}

y = y + Ax

CSR + sparse MVM: Advantages?

CSR

 Advantages:

 Only nonzero values are stored

 All arrays are accessed consecutively in MVM (spatial locality)

 Disadvantages:

 x is not reused

 Insertion costly

Impact of Matrix Sparsity on Performance

 Adressing overhead (dense MVM vs. dense MVM in CSR):

 ~ 2x slower (Mflop/s, example only)

 Irregular structure

 ~ 5x slower (Mflop/s, example only) for “random” sparse matrices

 Fundamental difference between MVM and sparse MVM (SMVM):

 Sparse MVM is input dependent (sparsity pattern of A)

 Changing the order of computation (blocking) requires changing the data
structure (CSR)

Bebop/Sparsity: SMVM Optimizations

 Idea: Register blocking

 Reason: Reuse x to reduce memory traffic

 Execution: Block SMVM y = y + Ax into micro MVMs

 Block size r x c becomes a parameter

 Consequence: Change A from CSR to r x c block-CSR (BCSR)

 BCSR: Blackboard

BCSR (Blocks of Size r x c)

 Assumptions:

 A is m x n

 Block size r x c

 Kr,c nonzero blocks

 Storage: Θ(rcKr,c), rcKr,c ≥ K

b c c

a

b b

c

A as matrix (r = c = 2)

b c 0 c 0 0 c 0 b b c 0

0 2 2

0 2 4

b_values

b_col_idx

b_row_start

A in BCSR (r = c = 2):

length rcKr,c

length Kr,c

length m/r+1

Sparse MVM Using 2 x 2 BCSR
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
 const double *b_value, const double *x, double *y)
{
 int i, j;
 double d0, d1, c0, c1;

 /* loop over block rows */
 for (i = 0; i < bm; i++, y += 2) {
 d0 = y[i]; /* scalar replacement */
 d1 = y[i+1];

 /* dense micro MVM */
 for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_col_idx++, b_value += 2*2) {
 c0 = x[b_col_idx[j]+0]; /* scalar replacement */
 c1 = x[b_col_idx[j]+1];
 d0 += b_value[0] * c0;
 d1 += b_value[2] * c0;
 d0 += b_value[1] * c1;
 d1 += b_value[3] * c1;
 }
 y[i] = d0;
 y[i+1] = d1;
 }
}

BCSR

 Advantages:

 Reuse of x and y (same as for dense MVM)

 Reduces storage for indexes

 Disadvantages:

 Storage for values of A increased (zeros added)

 Computational overhead (also due to zeros)

 Main factors (since memory bound):

 Plus: increased reuse on x + reduced index storage
= reduced memory traffic

 Minus: more zeros = increased memory traffic

* =

Which Block Size (r x c) is Optimal?

 Example: about 20,000 x 20,000 matrix with perfect 8 x 8 block
structure, 0.33% non-zero entries

 In this case: No overhead when blocked r x c, with r,c divides 8

source: R. Vuduc, LLNL

Speed-up through r x c Blocking

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

• machine dependent
• hard to predict

How to Find the Best Blocking for given A?

 Best block size is hard to predict (see previous slide)

 Solution 1: Searching over all r x c within a range, e.g., 1 ≤ r,c ≤ 12

 Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs

 Total cost: 1440 SMVMs

 Too expensive

 Solution 2: Model

 Estimate the gain through blocking

 Estimate the loss through blocking

 Pick best ratio

Model: Example

Gain by blocking (dense MVM) Overhead (average) by blocking

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

* =

Model: Doing that for all r and c
and picking best

Model

 Goal: find best r x c for y = y + Ax

 Gain through r x c blocking (estimation):

 dependent on machine, independent of sparse matrix

 Overhead through r x c blocking (estimation)

 scan part of matrix A

 independent of machine, dependent on sparse matrix

 Expected gain: Gr,c/Or,c

dense MVM performance in r x c BCSR
dense MVM performance in CSR

Gr,c =

number of matrix values in r x c BCSR
number of matrix values in CSR

Or,c =

Gain from Blocking (Dense Matrix in BCSR)

• machine dependent
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

ro
w

 b
lo

ck
 s

iz
e

 r

ro
w

 b
lo

ck
 s

iz
e

 r

column block size c column block size c

Pentium III Itanium 2

Typical Result

BCRS model

BCSR exhaustive
search

Analytical
upper bound
how obtained?
(blackboard)

CRS

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

