How to Write Fast Numerical Code

Spring 2011 Lecture 12

Instructor: Markus Püschel TA: Georg Ofenbeck

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Miscellaneous

- Start of research project
- No class next Monday, April 11th (Sechseläuten)
- Midterm exam: Friday, April 15th

Today

Linear algebra algorithms and optimization

- Solving linear systems (Gauss elimination)
- Matrix inversion
- Determinant

Reminder: LAPACK

- Implements linear algebra algorithms
- Implemented on top of BLAS using BLAS 3 as much as possible (by "blocking" the algorithms)

Linear system solving Matrix inversion Singular value decomposition ... and more

LAPACK

BLAS

BLAS 1: vector-vector ops BLAS 2: matrix-vector ops BLAS 3: matrix-matrix ops

Example: Linear Systems and Related

- Solving linear systems
- PLU factorization
- Matrix inversion
- Determinant

Complexity

- Source: Buergisser, Clausen, Shokrollahi "Algebraic Complexity Theory," Springer 1997, pp. 426
- Definition: P(n), n > 0, a sequence of problems (n = problem size), complexity measure = number of adds + mults, then

 $w(P) = inf(g | complexity(P(n)) = O(n^g))$

Problems:

- MMM(n): multiplying two n x n matrices
- MInv(n): inverting an n x n matrix
- PLU(n): computing PLU factorization of an n x n matrix
- Det(n): computing the determinant of an n x n matrix

Complexity Results

Example (we had that before): $2 \le w(MMM(n)) < 2.38$

Theorem: w(MMM(n)) = w(MInv(n)) = w(PLU(n)) = w(Det(n))

Cost of the usual implementations:

- MMM(n) = 2n³ + O(n²)
- MInv(n) = 8/3 n³ + O(n²)
- PLU(n) = 2/3 n³ + O(n²)
- Det(n) = 2/3 n³ + O(n²)

How it's Implemented

Blackboard

Chapter 2 in James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997