
How to Write Fast Numerical Code
Spring 2011
Lecture 11

Instructor: Markus Püschel

TA: Georg Ofenbeck

Miscellaneous

 Intel compiler icc:

 Free for linux

 Who needs it for Visual Studio?

Last Time: Model-Based ATLAS

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• More hardware parameters needed

Today: Remaining Details

 Register renaming and the refined model for x86

 TLB effects

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by
name → rename

r1 = r2 + r3
…
r = r4 + r5

now ILP

Resolving WAR

 Compiler: Use a different register, r = r6

 Hardware (if supported): register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

Register Renaming

 Hardware manages mapping architectural → physical registers

 More physical than logical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by
resolving WAR dependencies

r1

r2

r3

rn

ISA
architectural (logical) registers physical registers

Scalar Replacement Again

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

 <more>
 s266 = (t287 - t285);
 s267 = (t282 + t286);
 s268 = (t282 - t286);
 s269 = (t284 + t288);
 s270 = (t284 - t288);
 s271 = (0.5*(t271 + t280));
 s272 = (0.5*(t271 - t280));
 s273 = (0.5*((t281 + t283) - (t285 + t287)));
 s274 = (0.5*(s265 - s266));
 t289 = ((9.0*s272) + (5.4*s273));
 t290 = ((5.4*s272) + (12.6*s273));
 t291 = ((1.8*s271) + (1.2*s274));
 t292 = ((1.2*s271) + (2.4*s274));
 a122 = (1.8*(t269 - t278));
 a123 = (1.8*s267);
 a124 = (1.8*s269);
 t293 = ((a122 - a123) + a124);
 a125 = (1.8*(t267 - t276));
 t294 = (a125 + a123 + a124);
 t295 = ((a125 - a122) + (3.6*s267));
 t296 = (a122 + a125 + (3.6*s269));
 <more>

no duplicates

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core: MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
 load a // 2 registers
 load b // 3 registers
 compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

Extended Model (x86)

 MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
 load a // 1 register
 rb = b[1] // 1 register
 rb = rb*a // mult (two-operand)
 rc1 = rc1 + rb // add (two-operand)
 rb = b[2] // reuse register (WAR: renaming resolves it)
 rb = rb*a
 rc2 = rc2 + rb
 …
}
c[0] = rc1, …, c[13] = rc14 Summary:

- no reuse in a and b
+ larger tile size for c

Today: Remaining Details

 Register renaming and the refined model for x86

 TLB effects

 Blackboard

Experiments

 Unleashed: Not generated =
hand-written contributed code

 Refined model for computing
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is
comparable to search-based
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

