
How to Write Fast Numerical Code
Spring 2011
Lecture 11

Instructor: Markus Püschel

TA: Georg Ofenbeck

Miscellaneous

 Intel compiler icc:

 Free for linux

 Who needs it for Visual Studio?

Last Time: Model-Based ATLAS

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• More hardware parameters needed

Today: Remaining Details

 Register renaming and the refined model for x86

 TLB effects

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by
name → rename

r1 = r2 + r3
…
r = r4 + r5

now ILP

Resolving WAR

 Compiler: Use a different register, r = r6

 Hardware (if supported): register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

Register Renaming

 Hardware manages mapping architectural → physical registers

 More physical than logical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by
resolving WAR dependencies

r1

r2

r3

rn

ISA
architectural (logical) registers physical registers

Scalar Replacement Again

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

 <more>
 s266 = (t287 - t285);
 s267 = (t282 + t286);
 s268 = (t282 - t286);
 s269 = (t284 + t288);
 s270 = (t284 - t288);
 s271 = (0.5*(t271 + t280));
 s272 = (0.5*(t271 - t280));
 s273 = (0.5*((t281 + t283) - (t285 + t287)));
 s274 = (0.5*(s265 - s266));
 t289 = ((9.0*s272) + (5.4*s273));
 t290 = ((5.4*s272) + (12.6*s273));
 t291 = ((1.8*s271) + (1.2*s274));
 t292 = ((1.2*s271) + (2.4*s274));
 a122 = (1.8*(t269 - t278));
 a123 = (1.8*s267);
 a124 = (1.8*s269);
 t293 = ((a122 - a123) + a124);
 a125 = (1.8*(t267 - t276));
 t294 = (a125 + a123 + a124);
 t295 = ((a125 - a122) + (3.6*s267));
 t296 = (a122 + a125 + (3.6*s269));
 <more>

no duplicates

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core: MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
 load a // 2 registers
 load b // 3 registers
 compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

Extended Model (x86)

 MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
 load a // 1 register
 rb = b[1] // 1 register
 rb = rb*a // mult (two-operand)
 rc1 = rc1 + rb // add (two-operand)
 rb = b[2] // reuse register (WAR: renaming resolves it)
 rb = rb*a
 rc2 = rc2 + rb
 …
}
c[0] = rc1, …, c[13] = rc14 Summary:

- no reuse in a and b
+ larger tile size for c

Today: Remaining Details

 Register renaming and the refined model for x86

 TLB effects

 Blackboard

Experiments

 Unleashed: Not generated =
hand-written contributed code

 Refined model for computing
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is
comparable to search-based
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

