How to Write Fast Numerical Code

Spring 2011
Lecture 8

Instructor: Markus Püschel

TA: Georg Ofenbeck

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Reuse (Inherent Temporal Locality)

- Reuse of an algorithm:

$\frac{\text { Number of operations }}{\text { Size of input + size of output data }} \quad$| Minimal number of |
| :--- |
| Memory accesses |

- Examples:
- Matrix multiplication $\mathrm{C}=\mathrm{AB}+\mathrm{C} \quad \frac{2 n^{3}}{3 n^{2}}=\frac{2}{3} n=O(n)$
- Discrete Fourier transform

$$
\approx \frac{5 n \log _{2}(n)}{2 n}=\frac{5}{2} \log _{2}(n)=O(\log (n))
$$

- Adding two vectors $x=x+y$

$$
\frac{n}{2 n}=\frac{1}{2}=O(1)
$$

Last Time: Caches

Last Time: Blocking

Today

- Linear algebra software: LAPACK and BLAS
- MMM
- ATLAS: MMM program generator

Linear Algebra Algorithms: Examples

- Solving systems of linear equations
- Eigenvalue problems
- Singular value decomposition

■ LU/Cholesky/QR/... decompositions

- ... and many others
- Make up most of the numerical computation across disciplines (sciences, computer science, engineering)
- Efficient software is extremely relevant

LAPACK and BLAS

- Basic Idea:

- Basic Linear Algebra Subroutines (BLAS, list)
- BLAS 1: vector-vector operations (e.g., vector sum)
- BLAS 2: matrix-vector operations (e.g., matrix-vector product)

Reuse: O(1)

- BLAS 3: matrix-matrix operations (e.g., MMM)
- LAPACK implemented on top of BLAS
- Using BLAS 3 as much as possible

Why is BLAS3 so important?

- Using BLAS3 = blocking
- Reuse $O(1) \rightarrow O(n)$
- Cache analysis for blocking MMM (blackboard)
- Blocking (for the memory hierarchy) is the single most important optimization for dense linear algebra algorithms
- Unfortunately: The introduction of multicore processors requires a reimplementation of LAPACK
just multithreading BLAS is not good enough

Matlab

- Invented in the late 70s by Cleve Moler
- Commercialized (MathWorks) in 84
- Motivation: Make LINPACK, EISPACK easy to use
- Matlab uses LAPACK and other libraries but can only call it if you operate with matrices and vectors and do not write your own loops
- A*B (calls MMM routine)
- A\b (calls linear system solver)

Today

- Linear algebra software: history, LAPACK and BLAS

■ MMM

- ATLAS: MMM program generator

MMM by Definition

- Usually computed as $C=A B+C$
- Cost as computed before
- n^{3} multiplications $+\mathrm{n}^{3}$ additions $=2 \mathrm{n}^{3}$ floating point operations
- $=\mathrm{O}\left(\mathrm{n}^{3}\right)$ runtime
- Blocking
- Increases locality (see previous example)
- Does not decrease cost
- Can we do better?

Strassen's Algorithm

- Strassen, V. "Gaussian Elimination is Not Optimal," Numerische Mathematik 13, 354-356, 1969
Until then, MMM was thought to be $\Theta\left(n^{3}\right)$
- Recurrence $T(n)=7 T(n / 2)+O\left(n^{2}\right):$

Multiplies two $\mathrm{nx} \mathbf{n}$ matrices in $\mathrm{O}\left(\mathrm{n}^{\log _{2}(7)}\right) \approx \mathbf{O}\left(\mathrm{n}^{2.808}\right)$

- Crossover point, in terms of cost: $n=654$, but ...
- Structure more complex \rightarrow performance crossover much later
- Numerical stability inferior
- Can we do better?

MMM Complexity: What is known

- Coppersmith, D. and Winograd, S. "Matrix Multiplication via Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990
- MMM is $\mathbf{O}\left(\mathrm{n}^{2.376}\right)$
- MMM is obviously $\Omega\left(\mathrm{n}^{2}\right)$
- It could well be $\Theta\left(n^{2}\right)$
- Compare this to matrix-vector multiplication:
- Known to be $\Theta\left(n^{2}\right)$ (Winograd), i.e., boring

Today

- Linear algebra software: history, LAPACK and BLAS
- MMM
- ATLAS: MMM program generator

MMM: Memory Hierarchy Optimization

MMM (square real double) Core 2 Duo 3Ghz

matrix size

- Intel compiler icc-02
- Huge performance difference for large sizes
- Great case study to learn memory hierarchy optimization

ATLAS

- Successor of PhiPAC, BLAS program generator (web)
- Idea: automatic porting

- People can also contribute handwritten code
- The generator uses empirical search over implementation alternatives to find the fastest implementation
no vectorization or parallelization: so not really used anymore
- We focus on BLAS3 MMM
- Search only over cost $\mathbf{2 n}^{\mathbf{3}}$ algorithms (cost equal to triple loop)

ATLAS Architecture

MFLOPS
Compile,
Execute,
Measure

Search parameters:

- span search space
- specify code
- found by orthogonal line search

Hardware parameters:

- L1Size: size of L1 data cache
- NR: number of registers
- MulAdd: fused multiply-add available?
- L_{*} : latency of FP multiplication

How ATLAS Works

- Blackboard

■ References:

- "Automated Empirical Optimization of Software and the ATLAS project" by R. Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-2):3-35, 2001
- K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings of the IEEE, 93(2), pp. 358-386, 2005. Link.
Our presentation is based on this paper

