
How to Write Fast Numerical Code
Spring 2011
Lecture 6

Instructor: Markus Püschel

TA: Georg Ofenbeck

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Organizational

 Class this Friday 18.3

 Exam?

 Monday April 11 (Sechseläuten, afternoon is off)

 Friday April 15

Organization

 Temporal and spatial locality

 Caches

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Peak performance:
2 SSE two operand ops/cycles
512 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches/Memory hierarchy

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
 L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Core 1

Abstracted Microarchitecture: Example Core (2008)
Throughput is measured in doubles/cycle
Latency in cycles for one double
1 double = 8 bytes
Rectangles not to scale

Hard disk
~500 GB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 “in flight”)

execution
units

•out of order execution
•superscalar

CISC ops
RISC
μops issue

6 μops/
cycle

lat: 3
tp: 2

lat: 14
tp: 1

lat: 100
tp: 1/4

lat: millions
tp: 1/250

ISA

Core 1

Core 2 L2
 c

ac
h

e

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Why Caches Work: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

 Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

 Items with nearby addresses tend
to be referenced close together in time

memory

memory

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

Example: Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

 Being able to assess the locality of code is a crucial skill for a
performance programmer

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Locality Example #1

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

Locality Example #2

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Locality Example #3

int sum_array_3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < N; k++)

 sum += a[k][i][j];

 return sum;

}

 How to improve locality?

Reuse (Inherent Temporal Locality)

 Reuse of an algorithm:

 Typically:
no. operations = arithmetic cost = no. floating point adds and mults

 Intuitively measures how often every input element is on average
needed in the computation

 Examples:

 Matrix multiplication C = AB + C

 Discrete Fourier transform

 Adding two vectors x = x+y

Number of operations

Size of input + size of output data

2n3

3n2
= 2

3
n = O(n)

¼ 5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

n
2n

= 1
2
= O(1)

CPU bound versus Memory bound

 Definitions are not precise

 An algorithm with high reuse is called CPU bound

 Most time is spent computing

 Will run faster if CPU is faster

 An algorithm with low reuse is called memory bound

 Most time spent transferring data in the memory hierarchy

 Will run faster if memory bus is faster

 Performance optimization: Make sure that high reuse actually
translates into few cache misses, i.e., into temporal locality with
respect to the cache

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuse FFT: O(log(n)) reuse

Up to 80-90% peak
Performance can be maintained
Cache miss time compensated/hidden
by computation

Up to 40-50% peak
Performance drop outside L2 cache
Most time spent transferring data

