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Organizational 

 Class this Friday 18.3 

 Exam? 

 Monday April 11 (Sechseläuten, afternoon is off) 

 Friday April 15 



Organization 

 Temporal and spatial locality 

 Caches 



Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Peak performance:  
2 SSE two operand ops/cycles 
512 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 
Latency 
100 cycles 

Solution: Caches/Memory hierarchy 



Typical Memory Hierarchy 
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Core 1 

Abstracted Microarchitecture: Example Core (2008) 
Throughput is measured in doubles/cycle 
Latency in cycles for one double 
1 double = 8 bytes 
Rectangles not to scale 

Hard disk 
~500 GB 

fadd 

fmul 

ALU 

load 

store 

Main 
Memory 
(RAM) 
4 GB 

L2 cache 
4 MB 

16-way 
64B CB 

L1 Icache 
 

both 
32 KB 
8-way 
64B CB 

L1 Dcache 

16 FP 
register 

internal 
registers 

instruction 
decoder 

(up to 5 ops/cycle) instruction pool 
(up to 96 “in flight”) 

execution 
units 

•out of order execution 
•superscalar 

CISC ops 
RISC  
μops issue 

6 μops/ 
cycle 

lat: 3 
tp: 2 

lat: 14 
tp: 1 

lat: 100 
tp: 1/4 

lat: millions 
tp: 1/250 

ISA 

Core 1 

Core 2 L2
 c

ac
h

e 

Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 



Why Caches Work: Locality 

 Locality: Programs tend to use data and instructions with addresses 
near or equal to those they have used recently 
History of locality 

 

 Temporal locality:   

 Recently referenced items are likely  
to be referenced again in the near future 

 

 Spatial locality:   

 Items with nearby addresses tend  
to be referenced close together in time 

 

 

memory 

memory 

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1


Example: Locality? 

 Data: 

 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 

 Temporal: loops cycle through the same instructions 

 Spatial: instructions referenced in sequence 

 

 Being able to assess the locality of code is a crucial skill for a 
performance programmer 

 

sum = 0; 

for (i = 0; i < n; i++) 

   sum += a[i]; 

return sum; 



Locality Example #1 

int sum_array_rows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 



Locality Example #2 

int sum_array_cols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 



Locality Example #3 

int sum_array_3d(int a[M][N][N]) 

{ 

    int i, j, k, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            for (k = 0; k < N; k++) 

                sum += a[k][i][j]; 

    return sum; 

} 

 How to improve locality? 



Reuse (Inherent Temporal Locality) 

 Reuse of an algorithm: 

 

 

 Typically:  
no. operations = arithmetic cost = no. floating point adds and mults 

 Intuitively measures how often every input element is on average 
needed in the computation 

 Examples: 

 Matrix multiplication C = AB + C 

 

 Discrete Fourier transform 

 

 Adding two vectors x = x+y 

Number of operations 

Size of input + size of output data 

2n3

3n2
= 2

3
n = O(n)

¼ 5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

n
2n

= 1
2
= O(1)



CPU bound versus Memory bound 

 Definitions are not precise 

 An algorithm with high reuse is called CPU bound 

 Most time is spent computing 

 Will run faster if CPU is faster 

 An algorithm with low reuse is called memory bound 

 Most time spent transferring data in the memory hierarchy 

 Will run faster if memory bus is faster 

 

 

 Performance optimization: Make sure that high reuse actually 
translates into few cache misses, i.e., into temporal locality with 
respect to the cache 



Effects 
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Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
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Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuse FFT: O(log(n)) reuse 

Up to 80-90% peak 
Performance can be maintained 
Cache miss time compensated/hidden  
by computation 

Up to 40-50% peak 
Performance drop outside L2 cache 
Most time spent transferring data 


