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Organizational

m Class this Friday 18.3

m Exam?
" Monday April 11 (Sechselauten, afternoon is off)

"  Friday April 15



Organization

m Temporal and spatial locality

m Caches



Problem: Processor-Memory Bottleneck
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Solution: Caches/Memory hierarchy



Typical Memory Hierarchy
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Abstracted Microarchitecture: Example Core (2008)
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1 double = 8 bytes
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Why Caches Work: Locality

m Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

m Temporal locality: ; ; memory

m  Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: < 2 memory

® |tems with nearby addresses tend
to be referenced close together in time



http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

Example: Locality?

sum = 0;

for (i = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration

®  Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: loops cycle through the same instructions

® Spatial: instructions referenced in sequence

m Being able to assess the locality of code is a crucial skill for a
performance programmer



Locality Example #1

int sum array rows(int a[M] [N])

{

int i, j, sum = 0;

for (1 = 0; i < M; i++4)
for (j = 0; j < N; j++)
sum += a[i][]];
return sum;




Locality Example #2

int sum array cols(int a[M] [N])

{

int i, j, sum = 0;

for (j = 0; j < N; Jj++)
for (1 = 0; i < M; i++)
sum += a[i] []];
return sum;




Locality Example #3

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; i < M; i++)
for (jJ = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += al[k][1][]]~
return sum;

}

m How to improve locality?



Reuse (Inherent Temporal Locality)

m Reuse of an algorithm:

Number of operations

Size of input + size of output data
m Typically:
no. operations = arithmetic cost = no. floating point adds and mults

m Intuitively measures how often every input element is on average
needed in the computation

m Examples: ;
= Matrix multiplication C=AB + C g—ng' — %n — O(n)

" Discrete Fourier transform ~ O loga(m) _ EllogQ(n) = O(log(n))

1 _
= Adding two vectors x = x+y on 2 0(1)



CPU bound versus Memory bound

m Definitions are not precise
m An algorithm with high reuse is called CPU bound
=  Most time is spent computing

= Will run faster if CPU is faster

m An algorithm with low reuse is called memory bound
®  Most time spent transferring data in the memory hierarchy

= Will run faster if memory bus is faster

m Performance optimization: Make sure that high reuse actually
translates into few cache misses, i.e., into temporal locality with
respect to the cache



Effects

FFT: O(log(n)) reuse MMM: O(n) reuse

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision) Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
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matrix size

Up to 40-50% peak Up to 80-90% peak

Performance drop outside L2 cache Performance can be maintained

Most time spent transferring data Cache miss time compensated/hidden
by computation



