How to Write Fast Numerical Code

Spring 2011
Lecture 6

Instructor: Markus Puschel
TA: Georg Ofenbeck

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Organizational

m Class this Friday 18.3

m Exam?
" Monday April 11 (Sechselauten, afternoon is off)

" Friday April 15

Organization

m Temporal and spatial locality

m Caches

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months Bus bandwidth
evolved much slower Main
CPU Reg
Memory
Core 2 Duo: Core 2 Duo:
Peak performance: Bandwidth
2 SSE two operand ops/cycles 2 Bytes/cycle
512 Bytes/cycle Latency
100 cycles

Solution: Caches/Memory hierarchy

Typical Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

L5:

LO:
re gi sters CPU registers hold words retrieved from
L1 cache
L1: on-chip L1
cache (S R AM) L1 cache holds cache lines retrieved from
L2 cache
L2: i
on-chip L2
cache (S RAM) L2 cache holds cache lines retrieved
from main memory
L3:
main memory
(DRAM) Main memory holds disk blocks
retrieved from local disks
L4: local secondary storage
- Local disks hold files
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

retrieved from disks on
remote network servers

Abstracted Microarchitecture: Example Core (2008)

Throughput is measured in doubles/cycle
Latency in cycles for one double

1 double = 8 bytes

Rectangles not to scale

*out of order execution
esuperscalar
lat: 3 lat: 14 lat: 100
fadd tp: 2 tp: 1 tp: 1/4
internal 16 FP
fmul registers register
L1 Dcache
ALU
load Main
Memory
RISC
store i RAM
Issue pnops CISC ops (4 GB)
execution © HOPS/ P—
units cycle
instruction
decoder
instruction pool (up to 5 ops/cycle) L1 Icache L2 cache
(up to 96 “in flight”) 4 MB
both 16-way
32 KB 64B CB
8-way
Core 1 648 CB
on die Memory hierarchy:
Core 2 Duo: * Registers
Corel — 2 * L1cache
S RAM * L2 cache
Core2 — 9o

* Main memory
* Hard disk

lat: millions
tp: 1/250

Hard disk
~500 GB

Why Caches Work: Locality

m Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

m Temporal locality: ; ; memory

m Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: < 2 memory

® |tems with nearby addresses tend
to be referenced close together in time

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

Example: Locality?

sum = 0;

for (i = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration

® Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: loops cycle through the same instructions

® Spatial: instructions referenced in sequence

m Being able to assess the locality of code is a crucial skill for a
performance programmer

Locality Example #1

int sum array rows(int a[M] [N])

{

int i, j, sum = 0;

for (1 = 0; i < M; i++4)
for (j = 0; j < N; j++)
sum += a[i][]];
return sum;

Locality Example #2

int sum array cols(int a[M] [N])

{

int i, j, sum = 0;

for (j = 0; j < N; Jj++)
for (1 = 0; i < M; i++)
sum += a[i] []];
return sum;

Locality Example #3

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; i < M; i++)
for (jJ = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += al[k][1][]]~
return sum;

}

m How to improve locality?

Reuse (Inherent Temporal Locality)

m Reuse of an algorithm:

Number of operations

Size of input + size of output data
m Typically:
no. operations = arithmetic cost = no. floating point adds and mults

m Intuitively measures how often every input element is on average
needed in the computation

m Examples: ;
= Matrix multiplication C=AB + C g—ng' — %n — O(n)

" Discrete Fourier transform ~ O loga(m) _ EllogQ(n) = O(log(n))

1 _
= Adding two vectors x = x+y on 2 0(1)

CPU bound versus Memory bound

m Definitions are not precise
m An algorithm with high reuse is called CPU bound
= Most time is spent computing

= Will run faster if CPU is faster

m An algorithm with low reuse is called memory bound
® Most time spent transferring data in the memory hierarchy

= Will run faster if memory bus is faster

m Performance optimization: Make sure that high reuse actually
translates into few cache misses, i.e., into temporal locality with
respect to the cache

Effects

FFT: O(log(n)) reuse MMM: O(n) reuse

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision) Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s Gflop/s
30 50
45
25 =
40
20 35
30
15 25
20
10
15
5 10
5
0
0 ol
16 32 64 128 256 512 1.0i2l411pui,os4isze 4,096 8,192 16,384 32,768 65,536 131,072 262,144 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Up to 40-50% peak Up to 80-90% peak

Performance drop outside L2 cache Performance can be maintained

Most time spent transferring data Cache miss time compensated/hidden
by computation

