
How to Write Fast Numerical Code
Spring 2011
Lecture 5

Instructor: Markus Püschel

TA: Georg Ofenbeck

Organizational

 Class Monday 14.3. → Friday 18.3

 Office hours:

 Markus: Tues 14–15:00

 Georg: Wed 14–15:00

 Research projects

 11 groups, 23 people

 I need to approve the projects

Last Time: ILP

 Latency/throughput (Pentium 4 fp mult: 7/2)

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

Twice as fast

Last Time: Why ILP?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

2 cycles/issue

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

void lower(char *s)

{

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

Optimization Blocker #1: Procedure Calls

 Procedure to convert string to lower case

/* My version of strlen */

size_t strlen(const char *s)

{

 size_t length = 0;

 while (*s != '\0') {

 s++;

 length++;

 }

 return length;

}

O(n)

O(n2) instead of O(n)

Improving Performance

 Move call to strlen outside of loop

 Since result does not change from one iteration to another

 Form of code motion/precomputation

void lower(char *s)

{

 int i;

 int len = strlen(s);

 for (i = 0; i < len; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

void lower(char *s)

{

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

Optimization Blocker: Procedure Calls
 Why couldn’t compiler move strlen out of inner loop?

 Procedure may have side effects

 Compiler usually treats procedure call as a black box that cannot be
analyzed

 Consequence: conservative in optimizations

 In this case the compiler may actually do if strlen is recognized as
built-in function

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Optimization Blocker: Memory Aliasing

 Code updates b[i] (= memory access) on every iteration

 Does compiler optimize this away? No!

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows1(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 b[i] = 0;

 for (j = 0; j < n; j++)

 b[i] += a[i*n + j];

 }

}

a

b

Σ

Reason: Possible Memory Aliasing

 If memory is accessed, compiler assumes the possibility of
side effects

 Example:

double A[9] =

 { 0, 1, 2,

 4, 8, 16},

 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows1(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 b[i] = 0;

 for (j = 0; j < n; j++)

 b[i] += a[i*n + j];

 }

}

Removing Aliasing

 Scalar replacement:

 Copy array elements that are reused into temporary variables

 Perform computation on those variables

 Enables register allocation and instruction scheduling

 Assumes no memory aliasing (otherwise possibly incorrect)

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows2(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 double val = 0;

 for (j = 0; j < n; j++)

 val += a[i*n + j];

 b[i] = val;

 }

}

Optimization Blocker: Memory Aliasing
 Memory aliasing:

Two different memory references write to the same location

 Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

 Hard to analyze = compiler cannot figure it out

 Hence is conservative

 Solution: Scalar replacement in innermost loop

 Copy memory variables that are reused into local variables

 Basic scheme:

 Load: t1 = a[i], t2 = b[i+1], ….

 Compute: t4 = t1 * t2; ….

 Store: a[i] = t12, b[i+1] = t7, …

More Difficult Example

 Matrix multiplication: C = A*B + C

 Which array elements are reused?

 All of them! But how to take advantage?

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n+j] += a[i*n + k]*b[k*n + j];

}

a b

i

j

*

c

=
c

+

Step 1: Blocking (Here: 2 x 2)

 Blocking, also called tiling = partial unrolling + loop exchange

 Assumes associativity (= compiler will not do it)

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=2)

 for (j = 0; j < n; j+=2)

 for (k = 0; k < n; k+=2)

 for (i1 = i; i1 < i+2; i1++)

 for (j1 = j; j1 < j+2; j1++)

 for (k1 = k; k1 < k+2; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Step 2: Unrolling Inner Loops
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=2)

 for (j = 0; j < n; j+=2)

 for (k = 0; k < n; k+=2)

 <body>

}

 Every array element a[…], b[…],c[…] used twice

 Now scalar replacement can be applied
(so again: loop unrolling is done with a purpose)

<body>

c[i*n + j] = a[i*n + k]*b[k*n + j] + a[i*n + k+1]*b[(k+1)*n + j]

 + c[i*n + j]

c[(i+1)*n + j] = a[(i+1)*n + k]*b[k*n + j] + a[(i+1)*n + k+1]*b[(k+1)*n + j]

 + c[(i+1)*n + j]

c[i*n + (j+1)] = a[i*n + k]*b[k*n + (j+1)] + a[i*n + k+1]*b[(k+1)*n + (j+1)]

 + c[i*n + (j+1)]

c[(i+1)*n + (j+1)] = a[(i+1)*n + k]*b[k*n + (j+1)]

 + a[(i+1)*n + k+1]*b[(k+1)*n + (j+1)] + c[(i+1)*n + (j+1)]

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Summary

 One can easily loose 10x, 100x in runtime or even more

 What matters besides operation count:

 Coding style (unnecessary procedure calls, unrolling, reordering, …)

 Algorithm structure (instruction level parallelism, locality, …)

 Data representation (complicated structs or simple arrays)

20x
4x SSE

4x threading

Summary: Optimize at Multiple Levels

 Algorithm:

 Evaluate different algorithm choices

 Restructuring may be needed (ILP, locality)

 Data representations:

 Careful with overhead of complicated data types

 Best are arrays

 Procedures:

 Careful with overhead

 They are black boxes for the compiler

 Loops:

 Often need to be restructured (ILP, locality)

 Unrolling often necessary to enable other optimizations

 Watch the innermost loop bodies

Numerical Functions

 Use arrays if possible

 Unroll to some extent

 To make ILP explicit

 To enable scalar replacement and hence register allocation for variables
that are reused

Organization

 Benchmarking: Basics

Section 3.2 in the tutorial http://spiral.ece.cmu.edu:8080/pub-
spiral/abstract.jsp?id=100

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100

Benchmarking

 First: Verify your code!

 Measure runtime in seconds for a set of relevant input sizes

 Determine performance [flop/s]

 Assumes negligible number of other ops (division, sin, cos, …)

 Needs arithmetic cost:

 Obtained statically (cost analysis since you understand the algorithm)

 or dynamically (tool that counts, or replace ops by counters through
macros)

 Compare to theoretical peak performance

 Careful: Different algorithms may have different op count, i.e., best
flop/s is not always best runtime

How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

Example: Timing MMM
 Assume MMM(A,B,C,n) computes

 C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)

{ // allocate

 double *A=(double*)malloc(n*n*sizeof(double));

 double *B=(double*)malloc(n*n*sizeof(double));

 double *C=(double*)malloc(n*n*sizeof(double));

 // initialize

 for(int i=0; i<n*n; i++){

 A[i] = B[i] = C[i] = 0.0;

 }

 init_MMM(A,B,C,n); // if needed

 // warm up cache (for warm cache timing)

 MMM(A,B,C,n);

 // time

 ReadTime(t0);

 for(int i=0; i<TIMING_REPETITIONS; i++)

 MMM(A,B,C,n);

 ReadTime(t1);

 // compute runtime

 return (double)((t1-t0)/TIMING_REPETITIONS);

}

Problems with Timing

 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache line
(on Core: address is divisible by 64)

 Time stamp counter (if used) overflows

 Machine was not rebooted for a long time: state of operating system causes
problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

 You work on a laptop that has dynamic frequency scaling

 Always check whether timings make sense, are reproducible

Benchmarks in Writing

 Specify platform, compiler and version, compiler flags used

 Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (no yellow on white please)

 Proper number format

 No: 13.254687; yes: 13.25

 No: 2.0345e-05 s; yes: 20.3 μs

 No: 100000 B; maybe: 100,000 B; yes: 100 KB

Markus Püschel
Computer Science

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2n (single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral C

Spiral C vectorized

Horizontal
y-label

Left alignment

Attractive font (sans serif, avoid Arial)

Main line
emphasized

(red, thicker)

No y-axis
(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

