How to Write Fast Numerical Code

Spring 2011 Lecture 3

Instructor: Markus Püschel TA: Georg Ofenbeck

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Organizational

- Class Monday 14.3. → Friday 18.3
- Mailing list
 - Everybody subscribed
 - Emails sent will go to everybody
 - Use to find project partners
- Email me if you know your partner

Cost Analysis

Exact solution of recurrences

- Last time: first order
- Today: second (and higher) order (blackboard)

Today

- Architecture
- Microarchitecture (numerical software point of view)
- First thoughts on fast code

Definitions

- Architecture: (also instruction set architecture = ISA) The parts of a processor design that one needs to understand to write assembly code.
- **Examples:** instruction set specification, registers
- Counterexamples: cache sizes and core frequency
- Example ISAs
 - x86
 - ia
 - MIPS
 - POWER
 - SPARC

Intel Architectures (Focus Floating Point)

A	rchitectures	Processors	
	X86-16	8086	
		286	_
	X86-32	386	_
		486	
		Pentium	
	MMX	Pentium MMX	
	SSE	Pentium III	_
	SSE2	Pentium 4	
	SSE3	Pentium 4E	
X86-64 / em64t		Pentium 4F	tim
	SSE4	Core 2 Duo	

ia: often redefined as latest Intel architecture

ISA SIMD (Single Instruction Multiple Data) Vector Extensions

- What is it?
 - Extension of the ISA. Data types and instructions for the parallel computation on short (length 2-8) vectors of integers or floats

				+										Χ					4-way
--	--	--	--	---	--	--	--	--	--	--	--	--	--	---	--	--	--	--	-------

Names: MMX, SSE, SSE2, ...

Why do they exist?

- Useful: Many applications have the necessary fine-grain parallelism Then: speedup by a factor close to vector length
- Doable: Chip designers have enough transistors to play with

We will have an extra lecture on vector instructions

- What are the problems?
- How to use them efficiently

Definitions

- Microarchitecture: Implementation of the architecture.
- Includes caches, cache structure,
- Examples
 - Intel processors (<u>Wikipedia</u>)
 - Intel <u>microarchitectures</u>

Microarchitecture: The View of the Computer Architect

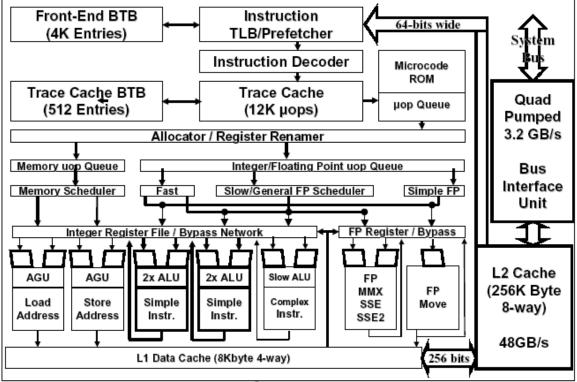
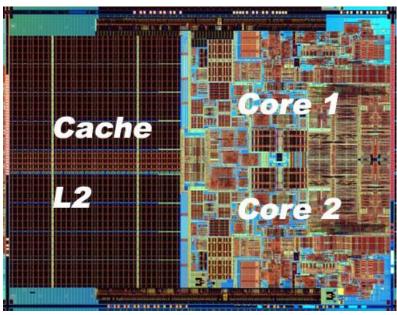
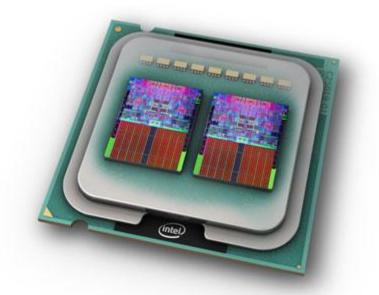



Figure 4: Pentium[®] 4 processor microarchitecture


we take the software developers view ... (blackboard)

Source: "The Microarchitecture of the Pentium 4 Processor," Intel Technology Journal Q1 2001

Core 2 Duo

http://www.pcmasters.de/hardware/review/intel-core-2-duo-e6700-codename-conroe-die-neue-generation.html

2 x Core 2 Duo packaged

Detailed information about Core 2 Duo

Floating Point Peak Performance

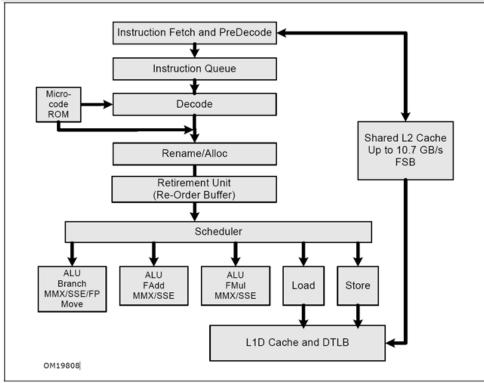


Figure 2-1. Intel Core Microarchitecture Pipeline Functionality

Theoretical peak performance (3 GHz, 1 core, no SIMD, double precision): *6 Gflop/s* SIMD, 1 core, double precision: *12 Gflop/s* SIMD, 1 core single precision: *24 Gflop/s* 2 or 4 cores: *multiply by 2 or 4 Requires: computation has 50% adds and 50% mults*

Latency/throughput (double) FP Add: 3, 1 FP Mult: 5, 1

Performance: First Thought

- It is all about keeping the floating point units busy
 - Instruction level parallelism
 - Locality