
How to Write Fast Numerical Code
Spring 2011
Lecture 2

Instructor: Markus Püschel

TA: Georg Ofenbeck

Technicalities

 Research project: Let me know

 if you know with whom you will work

 if you have already a project idea

 Deadline: March 9th

Last Time

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

This Course

Today

 Problem and Algorithm

 Asymptotic analysis: Do you know the O?

 Cost analysis

 Standard book: Introduction to Algorithms (2nd edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

Problem

 Problem: Specification of the relationship between a given input and
a desired output

 Numerical problems: In- and Output are numbers
(or lists, vectors, arrays, … of numbers)

 Examples
 Compute the discrete Fourier transform of a given vector x of length n

 Matrix-matrix multiplication (MMM)

 Compress an n x n image with a ratio …

 Sort a given list of integers

 Multiply by 5, y = 5x, using only additions and shifts

Algorithm

 Algorithm: A precise description of a sequence of steps to solve a
given problem.

 Numerical algorithms: These steps involve arithmetic computation
(addition, multiplication, …)

 Examples:
 Cooley-Tukey fast Fourier transform

 A description of MMM by definition

 JPEG encoding

 Mergesort

 y = x<<2 + x

Tips for Presenting and Publishing

 If your topic is an algorithm, you must:

 Give a formal problem specification, like:
Given …..; We want to compute……
or
Input: ……; Output: …..

 Analyze the algorithm, at least asymptotic runtime in O-notation

Origin of the Word “Algorithm”

 Mathematician, astronomer and
geographer; founder of Algebra
(his book: Al'Jabr wa'al'Muqabilah)

 Al’Khowârizmî → Algorithm
Al’Jabr → Algebra

 Khowârizm is today the small Soviet
city of Khiva

 Earlier word Algorism: The process of
doing arithmetic using Arabic numerals

 Algorithm: since 1957 in Webster
Dictionary

im
a

g
e

fr
o

m
 h

tt
p

:/
/j

ef
f5

6
0

.t
ri

p
o

d
.c

o
m

/

Abu Ja'far Mohammed ibn
Mûsâ al'Khowârizmî (c. 825) source:

http://www.disc-conference.org/disc2000/mirror/khorezmi/

http://www.disc-conference.org/disc2000/mirror/khorezmi/
http://www.disc-conference.org/disc2000/mirror/khorezmi/
http://www.disc-conference.org/disc2000/mirror/khorezmi/

Asymptotic Analysis of Algorithms & Problems

 Analysis of Algorithms for

 Runtime

 Space = memory requirement (or footprint)

 Runtime of an algorithm:

 Count “elementary” steps
(for numerical algorithms: usually floating point operations)
dependent on the input size n (more parameters may be necessary)

 State result in O-notation

 Example MMM (square and rectangular): C = A*B + C

 Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms

 Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

Valid?

 Is asymptotic analysis still valid given this?

 Yes: if the algorithm is O(f(n)), all memory effects are O(f(n))

 Vectorization, parallelization may introduce additional parameters

 Vector length ν

 Number of processors p

 Example: MMM

Do You Know The O?

 O(f(n)) is a … ?

 How are these related?

 O(f(n))

 Θ(f(n))

 Ω((f(n))

 O(2n) = O(3n)?

 O(log2(n)) = O(log3(n))

 O(n2 + m) = O(n2)?

Θ(f(n) = Ω(f(n)) ∩ O(f(n))

set

no

yes

no

Always Use Canonical Expressions

 Example:

 not O(2n + log(n)), but

 Canonical? If not replace:

 O(100)

 O(log2(n))

 Θ(n1.1 + n log(n))

 2n + O(log(n))

 O(2n) + log(n)

 Ω(n log(m) + m log(n))

O(n)

O(1)

O(log(n))

O(n1.1)

O(n)

yes

yes

Master Theorem: Divide-And Conquer Algorithms

Recurrence

Solution

Stays valid if n/b is replaced by its floor or ceiling

Runtime for problem size n

a subproblems of size n/b

Cost of conquer step

Asymptotic Analysis: Limitations

 Θ(f(n)) describes only the eventual shape of the runtime

 Constants matter

 n2 is likely better than 1000n2

 10000000000n is likely worse than n2

 But remember: exact op count ≠ runtime

size n

runtime

?

?

?

Refined Analysis for Numerical Problems

 Goal: determine exact “cost” of an algorithm

 Approach (use MMM as running example):
 Fix an appropriate cost measure C: “what do I count”

 For numerical problems typically floating point operations

 Determine cost of algorithm as function C(n) of input size n, or, more
generally, of all relevant input parameters:

C(n1,..,nk)

 Cost can be multi-dimensional

C(n1,..,nk) = (c1,..,cm)

 Exact cost is:
 More precise than asymptotic runtime

 Absolutely not the exact runtime

For Publications and Presentations

 Formally state the problem that you solve (as said before)

 State what is known about its complexity

 Analyze your algorithm (Example MMM):

 Define your cost measure

 Give cost as precisely as possible/meaningful

 Enables performance analysis

Peak performance
of this computer

Cost Analysis

 Cost analysis of divide-and-conquer algorithms =
Solving recurrences

 Great book: Graham, Knuth, Patashnik, “Concrete Mathematics,” 2nd
edition, Addison Wesley 1994

 Blackboard

