How to Write Fast Numerical Code

Spring 2011
Lecture 2

Instructor: Markus Püschel

TA: Georg Ofenbeck

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Technicalities

- Research project: Let me know
- if you know with whom you will work
- if you have already a project idea
- Deadline: March $9^{\text {th }}$

Last Time

Today

- Problem and Algorithm
- Asymptotic analysis: Do you know the O?
- Cost analysis
- Standard book: Introduction to Algorithms (2 ${ }^{\text {nd }}$ edition), Corman, Leiserson, Rivest, Stein, McGraw Hill 2001)

Problem

- Problem: Specification of the relationship between a given input and a desired output
- Numerical problems: In- and Output are numbers (or lists, vectors, arrays, ... of numbers)
- Examples
- Compute the discrete Fourier transform of a given vector x of length n
- Matrix-matrix multiplication (MMM)
- Compress an $\mathrm{n} \times \mathrm{n}$ image with a ratio ...
- Sort a given list of integers
- Multiply by $5, y=5 x$, using only additions and shifts

Algorithm

- Algorithm: A precise description of a sequence of steps to solve a given problem.
- Numerical algorithms: These steps involve arithmetic computation (addition, multiplication, ...)
- Examples:
- Cooley-Tukey fast Fourier transform
- A description of MMM by definition
- JPEG encoding
- Mergesort
- $y=x \ll 2+x$

Tips for Presenting and Publishing

- If your topic is an algorithm, you must:
- Give a formal problem specification, like:

Given; We want to compute......
or
Input: \qquad Output:

- Analyze the algorithm, at least asymptotic runtime in O-notation

Origin of the Word "Algorithm"

- Mathematician, astronomer and geographer; founder of Algebra (his book: Al'Jabr wa'al'Muqabilah)
- Al'Khowârizmî \rightarrow Algorithm

Al'Jabr \rightarrow Algebra

- Khowârizm is today the small Soviet city of Khiva
- Earlier word Algorism: The process of doing arithmetic using Arabic numerals
- Algorithm: since 1957 in Webster Dictionary

Asymptotic Analysis of Algorithms \& Problems

- Analysis of Algorithms for
- Runtime
- Space = memory requirement (or footprint)
- Runtime of an algorithm:
- Count "elementary" steps (for numerical algorithms: usually floating point operations) dependent on the input size n (more parameters may be necessary)
- State result in O-notation
- Example MMM (square and rectangular): $\mathrm{C}=\mathrm{A}^{*} \mathrm{~B}+\mathrm{C}$
- Runtime complexity of a problem = Minimum of the runtimes of all possible algorithms
- Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

Valid?

- Is asymptotic analysis still valid given this?

- Yes: if the algorithm is $\mathbf{O}(\mathrm{f}(\mathrm{n}))$, all memory effects are $\mathbf{O}(\mathrm{f}(\mathrm{n}))$
- Vectorization, parallelization may introduce additional parameters
- Vector length v
- Number of processors p
- Example: MMM

Do You Know The O?

- $O(f(n))$ is a ... ?
- How are these related?
- O(f(n))
- $\theta(f(n))$
- $\Omega((f(\mathrm{n}))$
- $\mathrm{O}\left(2^{\mathrm{n}}\right)=\mathrm{O}\left(3^{\mathrm{n}}\right)$?
- $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)=\mathrm{O}\left(\log _{3}(\mathrm{n})\right)$
- $O\left(n^{2}+m\right)=O\left(n^{2}\right)$?
set
$\Theta(f(n)=\Omega(f(n)) \cap O(f(n))$
yes
no

Always Use Canonical Expressions

- Example:
- not $\mathrm{O}(2 \mathrm{n}+\log (\mathrm{n}))$, but $\mathrm{O}(\mathrm{n})$
- Canonical? If not replace:
- O(100)

O(1)

- $O\left(\log _{2}(n)\right)$

O(log(n))

- $\Theta\left(n^{1.1}+n \log (n)\right)$
$O\left(n^{1.1}\right)$
- $2 n+O(\log (n))$
yes
- $\mathrm{O}(2 \mathrm{n})+\log (\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
- $\Omega(\mathrm{n} \log (\mathrm{m})+\mathrm{m} \log (\mathrm{n})) \quad$ yes

Master Theorem: Divide-And Conquer Algorithms

Recurrence

Solution

$$
T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right), & f(n)=O\left(n^{\log _{b} a-\epsilon}\right), \text { for some } \epsilon>0 \\ \Theta\left(n^{\log _{b} a} \log (n)\right), & f(n)=\Theta\left(n^{\log _{b}(a)}\right) \\ \Theta(f(n)), & f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right), \text { for some } \epsilon>0\end{cases}
$$

Stays valid if n / b is replaced by its floor or ceiling

Asymptotic Analysis: Limitations

- $O(f(n))$ describes only the eventual shape of the runtime

- Constants matter
- n^{2} is likely better than $1000 \mathrm{n}^{2}$
- $10000000000 n$ is likely worse than n^{2}
- But remember: exact op count $=$ runtime

Refined Analysis for Numerical Problems

- Goal: determine exact "cost" of an algorithm
- Approach (use MMM as running example):
- Fix an appropriate cost measure C: "what do I count"
- For numerical problems typically floating point operations
- Determine cost of algorithm as function $C(n)$ of input size n, or, more generally, of all relevant input parameters:

$$
\mathrm{C}\left(\mathrm{n}_{1}, . ., \mathrm{n}_{\mathrm{k}}\right)
$$

- Cost can be multi-dimensional

$$
C\left(n_{1}, . ., n_{k}\right)=\left(c_{1}, . ., c_{m}\right)
$$

■ Exact cost is:

- More precise than asymptotic runtime
- Absolutely not the exact runtime

For Publications and Presentations

- Formally state the problem that you solve (as said before)
- State what is known about its complexity
- Analyze your algorithm (Example MMM):
- Define your cost measure
- Give cost as precisely as possible/meaningful
- Enables performance analysis

Cost Analysis

- Cost analysis of divide-and-conquer algorithms = Solving recurrences
- Great book: Graham, Knuth, Patashnik, "Concrete Mathematics," $2^{\text {nd }}$ edition, Addison Wesley 1994
- Blackboard

