
Instructor: Markus Püschel

TA: Georg Ofenbeck

How to Write Fast Numerical Code
Spring 2011, Lecture 1

Picture: www.tapety-na-pulpit.org

Today

 Motivation for this course

 Organization of this course

Audio/image/video processing

Scientific Computing

Physics/biology simulations

Consumer Computing

Computing
 Unlimited need for performance

 Large set of applications, but …

 Relatively small set of critical
components (100s to 1000s)

 Matrix multiplication

 Discrete Fourier transform (DFT)

 Viterbi decoder

 Shortest path computation

 Stencils

 Solving linear system

 ….

Embedded Computing

Signal processing, communication, control

Scientific Computing (Clusters/Supercomputers)

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:
 Fluid dynamics
 Chemistry
 Biology
 Medicine
 Geophysics

Methods:
 Mostly linear algebra
 PDE solving
 Linear system solving
 Finite element methods

Consumer Computing (Desktop, …)

Photo/video processing Audio coding Security

Image compression

Methods:
 Linear algebra
 Transforms
 Filters
 Others

Original JPEG JPEG2000

Embedded Computing (Low-power processors)

Sensor networks Cars Robotics

Computation needed:
 Signal processing
 Control
 Communication

www.dei.unipd.it www.microway.com.au www.ece.drexel.edu

Methods:
 Linear algebra
 Transforms, Filters
 Coding

Research (Examples from Carnegie Mellon)

Biometrics Medical Imaging

Bioimaging
Computer vision

Bhagavatula/Savvides Moura

Kovacevic

Kanade

Classes of Performance-Critical Functions

 Transforms

 Filters/correlation/convolution/stencils/interpolators

 Dense linear algebra functions

 Sparse linear algebra functions

 Coder/decoders

 … several others

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

How Hard Is It to Get Fast Code?

Problem “compute Fourier transform”

Algorithm theory

Optimal algorithm

Software developer

Compiler

Source code

Fast executable

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

or ?

The Problem: Example 1

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

 Vendor compiler, best flags

 Roughly same operations count

12x

35x

The Problem: Example 2

 Vendor compiler, best flags

 Exact same operations count (2n3)

 What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

160x

Triple loop (< 1KB)

Fastest code (100 KB)

Evolution of Processors (Intel)

Evolution of Processors (Intel)

Era of
parallelism

And There Will Be Variety …

Source: IEEE SP Magazine, Vol. 26, November 2009

Core i7

Nvidia G200

TI TNETV3020 Tilera Tile64

Arm Cortex A9

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Multiple threads: 3x

Vector instructions: 3x

Memory hierarchy: 5x

 Compiler doesn’t do the job

 Doing by hand: nightmare

...
t282 = _mm_addsub_ps(t268, U247);
t283 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(), ………)
s217 = _mm_addsub_ps(t270, U247);
s218 = _mm_addsub_ps(_mm_mul_ps(t277, _mm_set1_ps((-0.70710678118654757))), ………)
t285 = _mm_add_ps(s217, s218);
t286 = _mm_sub_ps(s217, s218);
s219 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
s220 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, 0, 1, 0));
...

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

 Compiler doesn’t do the job

 Doing by hand: nightmare

Summary and Facts I

 Implementations with same operations count can have vastly different
performance (up to 100x and more)

 A cache miss can be 100x more expensive than an operation

 Vector instructions

 Multiple cores = processors on one die

 Minimizing operations count ≠ maximizing performance

 End of free speed-up for legacy code

 Future performance gains through increasing parallelism

Summary and Facts II

 It is very difficult to write the fastest code
 Tuning for memory hierarchy

 Vector instructions

 Efficient parallelization (multiple threads)

 Requires expert knowledge in algorithms, coding, and architecture

 Fast code can be large
 Can violate “good” software engineering practices

 Compilers often can’t do the job
 Often intricate changes in the algorithm required

 Parallelization/vectorization still unsolved

 Highest performance is in general non-portable

Performance/Productivity
Challenge

Current Solution

 Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform comes
out.

Better Solution: Autotuning

 Automate (parts of) the implementation or optimization

 Research efforts
 Linear algebra: Phipac/ATLAS, LAPACK,

Sparsity/Bebop/OSKI, Flame

 Tensor computations

 PDE/finite elements: Fenics

 Adaptive sorting

 Fourier transform: FFTW

 Linear transforms: Spiral

 …others

 New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005

Promising new area but
much more work needed …

This Course

 Obtain an understanding of performance (runtime)

 Learn how to write fast code for numerical problems

 Focus: Memory hierarchy and vector instructions

 Principles studied using important examples

 Applied in homeworks and a semester-long research project

 Learn about autotuning

Algorithms

Fast implementations of
numerical problems

Software

Compilers

Computer architecture

Today

 Motivation for this course

 Organization of this course

About this Course
 Team

 Me

 TA: Georg Ofenbeck

 Office hours: to be determined

 Email address for any questions: fastcode@lists.inf.ethz.ch

 Course website has ALL information

mailto:fastcode@lists.inf.ethz.ch

About this Course (cont’d)

 Requirements

 solid C programming skills

 matrix algebra

 Master student or above

 Grading

 40% research project

 20% midterm exam

 40% homework

 Friday slot

 Gives you scheduled time to work together

 Occasionally I will move lecture there

Research Project

 Team up in pairs

 Topic: Very fast implementation of a numerical problem

 Until March 9th: suggest to me a problem or I give you a problem
Tip: pick something from your research or that you are interested in

 Show “milestones” during semester

 Write 4 page standard conference paper (template will be provided)

 Give short presentation end of semester

 Submit final code (early semester break)

Midterm Exam

 Some algorithm analysis

 Memory hierarchy

 Other

 There is no final exam

Homework

 Exercises on algorithm/performance analysis (Math)

 Implementation exercises

 Concrete numerical problems

 Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

 Some templates will be provided

 Does everybody have access to an Intel processor?

 Homework scheduled to leave time for research project

 Small part of homework grade for neatness

 Late homework policy:

 No deadline extensions, but

 3 late days for the entire semester

 You can use at most 2 for a homework

Academic Integrity

 Zero tolerance cheating policy (cheat = fail + being reported)

 Homeworks

 All single-student

 Don’t look at other students code

 Don’t copy code from anywhere

 Ok to discuss things – but then you have to do it alone

 Code may be checked with tools

Background Material

 Course website

 Chapter 5 in:
Computer Systems: A Programmer's Perspective, 2nd edition
Randal E. Bryant and David R. O'Hallaron
(several ones are in the library)
web: http://csapp.cs.cmu.edu/

 Prior version of this course:
spring 2008 at ECE/CMU

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://people.inf.ethz.ch/markusp/teaching/18-645-CMU-spring08/course.html

Class Participation

 I’ll start on time

 It is important to attend

 Many things I’ll teach are not in books

 I’ll use part slides part blackboard

 Ask questions

 I will provide some anonymous feedback mechanism
(maybe every 3–4 weeks)

