
263-2300-00: How To Write Fast Numerical Code

Assignment 3
Due Date: Thu March 31 17:00

Maximal points: 200+10
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html

This is a 2 week homework and hence counts twice as much as the previous homeworks.

Submission instructions: Your submission for this assignment will include two parts. Submit both parts
into your SVN directory into the according folder hw03. Keep in mind that we check if the code was copied
from other people, so don’t do it!

Part 1: Plots and answers: The first part will be a file that contains the required plots and answers to
the questions. If you use other programs (such as MS-Word) to create your assignment, convert them to
PDF (google for ‘pdfcreator’ for a free conversion program).

Part 2: Source code: The second part will consist of your source code. Follow the instructions below to
create, name, and submit your source code. For all questions where you are asked to provide C code, we
provide a corresponding C template file that you need to use to answer the question. In particular,

• do NOT change the signature of the functions

• do NOT change the type of global arguments

• comply with the given environment variables, do not add others

• do not cross-reference functions among your submitted files. Each .c file should be completely inde-
pendent should be compilable on its own, (when compiled with our own main.c that you don’t have
access to).

• clean up your code as much as possible, do not leave in debug statements

• we provide a helpful sample main.c to show you how we would like the code to be structured. You
are free to use it or not use it. It doesn’t come with a timer, as you need to implement one. (possibly
using the one from Assignment 2). Do not submit this sample file.

Verifying your code: All code that you produce as a part of this assignment (and future assignments too!)
needs to be verified for computational correctness. For MMM, the easiest way is to compare to the standard
triple loop (from assignment 2) for a few randomly selected input matrices. We will independently verify
your code for correctness. Incorrect programs will not receive any credit.

Submitting your code: Your C files corresponding to the questions should be named code0.c, code1.c,
code2.c, and code3.c. In all, you will submit the 4 code<n>.c files, and the finalcode.c file, plus any extra
credit files. Do NOT change file names! Do not zip or otherwise archive the files.

263-2300-00 SS11 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 3 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html

1. Miss rate (40 pts) We consider the following program:

typedef double matrix [2] [8]
double comp(matrix A) {

int i ;
double t = 1000 . 0 ;
for (i = 0 ; i < 7 ; i++) { // note : 7 not 8 because o f the boundary

t = t /(A [0] [i] + A [0] [i +1]) ;
t = t /(A [1] [i] + A [1] [i +1]) ;

}
return t ;

}

We assume that a double requires 8 bytes, and that the array is cache aligned (that is A[0][0] is mapped
to the first set and the first position in a cache block). Further, A has been initialized to contain only
positive numbers. We assume a cold cache and ignore i and t in the cache analysis (they are held in
registers). Recall that the miss rate is defined as #misses

#accesses
. (Hint: It helps to draw cache and array.)

(a) How many times is A accessed in this program?

(b) The cache is direct mapped, has a size of 64 bytes, and 4 sets.

i. How many doubles fit into one cache block?

ii. What is the miss rate of the above program?

(c) The cache is 2-way set associative, has a size of 128 bytes, and 4 sets.

i. How many doubles fit into one cache block?

ii. What is the miss rate of the above program?

2. Reuse (20 pts) Compute the reuse (as defined in class), both exact and in O-notation, for the following.
Give enough detail so we know how you did it.

(a) matrix-vector multiplication (MVM) in the form y = Ax + y, where x, y are vectors of length n

and A is n× n.

(b) the scalar or dot product α = x ∗ y =
∑n−1

i=0 xiyi, where x, y are of length n.

3. Blocking analysis for MVM (40 pts) We consider double precision MVM in the form y = Ax, where
x, y are of length n and A is n × n. The goal is to perform a cache miss analysis with and without
blocking analogous to the one done for MMM in class.

Assume a cache size of C doubles and that C is much smaller than n. Assume a cache block size of 8
doubles and a cold (empty) cache.

(a) With respect to locality, what is the fundamental difference between MMM and MVM?

(b) Using the above assumptions, compute the number of cache misses of a standard double loop
implementation based on

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

y[i] += A[i][j]*x[j];

Give enough detail so we know how you did it.

(c) Now assume a blocked implementation based on dividing A into blocks of size b × b, where 8
divides b and b divides n:

for (i = 0; i < n; i+=b)

for (j = 0; j < n; j+=b)

for (k = i; k < i+b; k++)

for (l = j; l < j+b; l++)

y[k] += A[k][l]*x[l];

263-2300-00 SS11 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 3 Computer Science
ETH Zurich

Compute the number of cache misses as a function of b. Give enough detail so we know how you
did it.

(d) Continuing the previous question, derive the largest block size such that one block and two
corresponding chunks of x and y fit into the cache (of size C). Show your work. What is the
reduction in the number of cache misses for this block size?

4. Mini-MMM (60 pts) The goal of this exercise is to implement a fast mini-MMM (similar to how ATLAS
generates it) to multiply two square NB ×NB matrices (NB is a parameter), which is then used within
MMM in problem 2.

(a) (By definition) Use the code we provided in homework 2 that implements the MMM directly
based on its definition (triple loop implementation), using the ijk loop order. Call this code0.

(b) (Register blocking) Block into micro MMMs with MU = NU = 2, KU = 1. The inner triple
loop must have the kij order. Manually unroll the innermost i- and j-loop and make sure you
have alternate additions and multiplications (one operation per line of code). Perform scalar
replacement on this unrolled code. Call this code1.

(c) (Unrolling) Unroll the innermost k-loop by a factor of 2 and 4 (KU = 2, 4, which doubles and
quadruples the loop body) and again do scalar replacement. Assume that 4 divides NB . This
part gives you code2 and code3.

(d) (Performance plot, search for best block size NB) Determine the L1 data cache size C (in doubles,
i.e., 8B units) of your computer. Measure the performance (in Mflop/s) of your four codes for all
NB with 16 ≤ NB ≤ min(80,

√
C) with 4 dividing NB . Create a plot with the x-axis showing

NB , and y-axis showing performance (so there are 4 lines in your plot for code0–code3). Discuss
the plot. Also include answers to the following questions in your discussion: which NB and which
code yields the maximum performance? What is the percentage of peak performance in this case?

(e) (Blocking for L2 cache) Consider now your L2 cache instead. What is its size (in doubles)? Can
you improve the performance of your fastest code so far by further increasing the block size NB

to block for L2 cache instead? Answer through an appropriate experiment and performance plot.

5. MMM (30 pts) Implement an MMM for multiplying two square n×n matrices assuming NB divides n,
blocked into NB×NB blocks using your best mini-MMM code from exercise 1. This is your finalcode.
Create a performance plot comparing this code and code0 (by definition) above for sizes roughly in
the range n = 100, . . . , 1500 in steps of roughly 100 (the exact numbers will depend on the NB you
found since you want multiples of NB). The x-axis shows n; the y-axis performance in Mflop/s or
Gflop/s. Discuss the plot.

6. MMM (10 extra pts) You can get up to 10 extra points by performing additional optimizations that
further improve the performance of your code. Demonstrate with a suitable plot.

7. Short project info (10 pts) Submit (in Word .doc, .txt, or latex .tex) the following about your project:

(a) An exact (as much as possible) problem specification for your class project.

For example for MMM, one can be very precise, and it could be like this:

Our goal is to implement matrix-matrix multiplication specified as follows:

Input: Two real matrices A,B of compatible size, A ∈ R
n×k and B ∈ R

k×m. We may impose
divisibility conditions on n, k,m depending on the actual implementation. Output: The matrix
product C = AB ∈ R

n×m.

(b) The algorithm you plan to consider for the problem. You can actually sketch the algorithm or
just give the name and a reference that explains it.

(c) A very short explanation of what kind of code already exists and in which language it is written.

263-2300-00 SS11 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 3 Computer Science
ETH Zurich

