
263-2300-00: How To Write Fast Numerical Code
Solution Assignment 1

Due Date: Thu March 10 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html

1. (30pts) Solve the recurrence g1 = 10, g2 = 6,

gn = 2 ∗ gn/2 + 3 ∗ gn/4, n = 2k, k ≥ 2.

Solving means determining a closed form for gn.

Solution:

We substitute n = 2k and gn = g2k = fk and get f0 = 10, f1 = 6 and

fk = 2 ∗ fk−1 + 3 ∗ fk−2 (1)

The generating function for fk, k ≥ 0 is

F (x) =

∞∑
k=0

fk ∗ xk (2)

Now we multiply (1) by xk and sum up from k = 2:

∞∑
k=2

fk ∗ xk = 2 ∗
∞∑
k=2

fk−1 ∗ xk + 3

∞∑
k=2

fk−2 ∗ xk (3)

The following holds:
∞∑
k=2

fk ∗ xk = F (x) − f0 − f1 ∗ x (4)

∞∑
k=2

fk−1 ∗ xk = x(F (x) − f0) ∗ x (5)

∞∑
k=2

fk−2 ∗ xk = x2 ∗ F (x) (6)

Substituting (4), (5) and (6) in (3) and yields

F (x) − f0 − f1 ∗ x = 2(x(F (x) − f0)) + 3x2F (x), (7)

and hence

F (x) =
f0 + (f1 − 2f0)x

1 − 2x− 3x2
(8)

Plugging in the inital values,

F (x) =
14x− 10

1 − 2x− 3x2
(9)

Now we do PFE (partial fraction expansion):

F (x) =
14x− 10

(1 − 3x)(1 + x)
(10)

F (x) =
A

1 − 3x
+

B

1 + x
(11)

Using the formula from class, we get the values A = 4 and B = 6. (Alternative: at this point we know
that fk = A3k + B(−1)k; this means one can get A,B by inserting the two initial values to obtain a
two linear equations in two unknowns; this method is more work though.)

263-2300-00 SS11 / Assignment 1
Instructor: Markus Püschel

Pg 1 of 5 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html


Expanding F (x) back into a series yields:

F (x) = 4

∞∑
k=0

3kxk + 6

∞∑
k=0

(−1)kxk (12)

From what we read off
Fk = 4 ∗ 3k + 6 ∗ (−1)k (13)

Translating back into exponential form yields the final result

gn = 4 ∗ 3log2(n) + 6 ∗ (−1)log2(n)

= 4 ∗ nlog2(3) + 6 ∗ (−1)log2(n)

2. (20pts) Proof that fk = ak ∗ c +
k−1∑
i=0

ai ∗ sk−i solves the recurrence f0 = c, fk = a ∗ fk−1 + sk, k ≥ 1.

Simplest solution: Just check that the formula satisfies the recurrence.

Initial condition: f0 = a0 ∗ c = c as desired.

Recurrence:

a ∗ fk−1 + sk = a(ak−1 ∗ c +

k−2∑
i=0

ai ∗ sk−1−i) + sk

= ak ∗ c + (a

k−2∑
i=0

ai ∗ sk−1−i) + sk

= ak ∗ c + (

k−2∑
i=0

ai+1 ∗ sk−1−i) + sk

= ak ∗ c + (

k−2+1∑
i=0+1

ai+1−1 ∗ sk−1−(i−1)) + sk

= ak ∗ c + (

k−1∑
i=1

ai ∗ sk−i) + sk

= ak ∗ c + (
k−1∑
i=0

ai ∗ sk−i) − a0 ∗ sk−0 + sk

= ak ∗ c +

k−1∑
i=0

ai ∗ sk−i

= fk

as desired.

Solution by induction:

We prove by induction therefore first proving the initial element

a ∗ fk−1 + sk = ak ∗ c +

k−1∑
i=0

ai ∗ sk−i

with f0 = c and k = 1 yields

a ∗ c + s1 = a1 ∗ c +

0∑
i=0

a0 ∗ s1

263-2300-00 SS11 / Assignment 1
Instructor: Markus Püschel

Pg 2 of 5 Computer Science
ETH Zurich



We then move on to proof that it holds for any element via

a ∗ fk + sk+1 = a(k+1) ∗ c +

k∑
i=0

ai ∗ sk+1−i

= a ∗ [ak ∗ c +

k−1∑
i=0

ai ∗ sk−i] + sk+1

= a(k+1) ∗ c +

k∑
i=0

ai ∗ sk+1−i

= ak+1 ∗ c + a ∗
k−1∑
i=0

ai ∗ sk−i + sk+1

= ak+1 ∗ c + a ∗
k+1−1∑
i=1

ai−1 ∗ sk−(i−1) + sk+1

= ak+1 ∗ c +

k+1−1∑
i=1

ai ∗ sk−(i−1) + sk+1

= ak+1 ∗ c +

k∑
i=0

ai ∗ sk−(i−1) − a0 ∗ sk−(0−1) + sk+1

a ∗ fk + sk+1 = ak+1 ∗ c +

k∑
i=0

ai ∗ s(k+1)−i)

3. (20pts) You know that O(n + 1) = O(n). Similarly, simplify the following as much as possible and
briefly justify.

(a) O(2n
2+1)

(b) O(2n
2+n+1)

(c) O(1.01n + n5)

(d) O(n2m + n log(n) + m log(m))

(e) O(2n+log2(n))

Solution:

(a) O(2n
2+1) = O(2n

2

), cause in 2n
2 ∗ 2 the 2 is a constant factor that can be removed

(b) O(2n
2+n+1) = O(2n

2+n), same logic as above - just that you can not remove the 2n as its not
constant

(c) O(1.01n + n5) = O(1.01n), n5 is O(1.01n) because limn→∞
n5

1.01n = 0

(d) O(n2m + n log(n) + m log(m)) = O(n2m + m log(m)) We can remove n log(n) cause it will be
always dominated by n2, while we cannot remove m log(m) since it is not comparable to either of
the other terms.

(e) O(2n+log2(n)) = O(2n ∗ 2log(n)) = O(n2n), similar to (b) we cannot remove any term, only modify
it as shown.

4. (30pts) The Strassen algorithm (see http://en.wikipedia.org/wiki/Strassen_algorithm), named
after Volker Strassen, showed for the first time that the standard approach for square matrix multipli-
cation, which requires Θ(n3) many operations, is not optimal. It works as follows.

263-2300-00 SS11 / Assignment 1
Instructor: Markus Püschel

Pg 3 of 5 Computer Science
ETH Zurich

http://en.wikipedia.org/wiki/Strassen_algorithm


We assume for this exercise n = 2k and that A,B,C are all n× n. Strassen’s algorithm for computing
C = AB partitions the matrices into blocks of half the size:

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)
Then first the following seven intermediate matrices are computed:
M1 = (A1,1 + A2,2)(B1,1 + B2,2)
M2 = (A2,1 + A2,2)(B1,1)
M3 = A1,1(B1,2 −B2,2)
M4 = A2,2(B2,1 −B1,1)
M5 = (A1,1 + A1,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 + B1,2)
M7 = (A1,2 −A2,2)(B2,1 + B2,2)

and from these the four blocks of C, and hence C, as

C1,1 = M1 + M4 −M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 −M2 + M3 + M6

Answer the following:

(a) The above shows that the algorithm decomposes matrix multiplication into u matrix multiplica-
tions of half the size and v matrix additions of half the size. What is u and v?

(b) We define the cost measure C(n) = (A(n),M(n)), where A(n) is the number of (scalar) additions
and M(n) the number of (scalar) multiplications required for matrix multiplication. First deter-
mine recursive formulas for A(n) and M(n) for Strassen’s algorithm. Second, solve these to get
the exact addition and multiplication count if Strassen’s algorithm is applied recursively for all
occurring matrix multiplications. Show your work.

Solution:

(a) u = 7 and v = 18. A straight forward solution would require 8 matrix multiplications of half the
size.

(b) Every matrix multiplication is divided into in 7 matrix multiplications and 18 matrix additions
(both of half the size). For matrices of size 1 × 1, 1 multiplication and no addition is required.
Therefore the recurrence for the number of scalar multiplications is

M(n) = 7 ∗M(n/2), M(1) = 1.

Since the 18 matrix additions of half the size require 18(n/2)2 = (9/2)n2 additions, the recurrence
for the number of additions is

A(n) = 7 ∗A(n/2) +
9

2
n2, A(1) = 0.

As usual, we first translate the recurrences by substituting n = 2k, m(k) = M(n), and a(k) =
A(n):

m(k) = 7m(k − 1), m(0) = 1

a(k) = 7a(k − 1) +
9

2
4k, a(0) = 0.

Now we use the formula proven in task 2 of this exercise sheet. This gives us for the multiplications:

m(k) = 7k ∗ 1 +

k−1∑
i=0

7i ∗ 0 = 7k

263-2300-00 SS11 / Assignment 1
Instructor: Markus Püschel

Pg 4 of 5 Computer Science
ETH Zurich



M(n) = 7log2(n) = nlog2(7)

For the additions:

a(k) = 7k ∗ 0 +

k−1∑
i=0

7i ∗ 9

2
∗ (4k−i)

=
9

2
∗ 4k

k−1∑
i=0

(
7

4
)i

=
9

2
∗ 4k(

7
4

k − 1
7
4 − 1

)

= 6(7k − 4k)

A(n) = 6(7log2(n) − 4log2(n)) = 6nlog2(7) − 6n2

Total operations count is therefore

C(n) = 7nlog2(7) − 6n2 = O(nlog2(7))

Attached a small table with values calculated for the number of operations.

n #Muls #Adds
2 7 18
4 49 198
8 343 1674

16 2401 12870
32 16807 94698

263-2300-00 SS11 / Assignment 1
Instructor: Markus Püschel

Pg 5 of 5 Computer Science
ETH Zurich


