263-2300-00: How To Write Fast Numerical Code

Solution Assignment 1

Due Date: Thu March 10 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html

1. $(30 \mathrm{pts})$ Solve the recurrence $g_{1}=10, g_{2}=6$,

$$
g_{n}=2 * g_{n / 2}+3 * g_{n / 4}, \quad n=2^{k}, k \geq 2
$$

Solving means determining a closed form for g_{n}.

Solution:

We substitute $n=2^{k}$ and $g_{n}=g_{2^{k}}=f_{k}$ and get $f_{0}=10, f_{1}=6$ and

$$
\begin{equation*}
f_{k}=2 * f_{k-1}+3 * f_{k-2} \tag{1}
\end{equation*}
$$

The generating function for $f_{k}, k \geq 0$ is

$$
\begin{equation*}
F(x)=\sum_{k=0}^{\infty} f_{k} * x^{k} \tag{2}
\end{equation*}
$$

Now we multiply (1) by x^{k} and sum up from $k=2$:

$$
\begin{equation*}
\sum_{k=2}^{\infty} f_{k} * x^{k}=2 * \sum_{k=2}^{\infty} f_{k-1} * x^{k}+3 \sum_{k=2}^{\infty} f_{k-2} * x^{k} \tag{3}
\end{equation*}
$$

The following holds:

$$
\begin{gather*}
\sum_{k=2}^{\infty} f_{k} * x^{k}=F(x)-f_{0}-f_{1} * x \tag{4}\\
\sum_{k=2}^{\infty} f_{k-1} * x^{k}=x\left(F(x)-f_{0}\right) * x \tag{5}\\
\sum_{k=2}^{\infty} f_{k-2} * x^{k}=x^{2} * F(x) \tag{6}
\end{gather*}
$$

Substituting (4), (5) and (6) in (3) and yields

$$
\begin{equation*}
F(x)-f_{0}-f_{1} * x=2\left(x\left(F(x)-f_{0}\right)\right)+3 x^{2} F(x) \tag{7}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F(x)=\frac{f_{0}+\left(f_{1}-2 f_{0}\right) x}{1-2 x-3 x^{2}} \tag{8}
\end{equation*}
$$

Plugging in the inital values,

$$
\begin{equation*}
F(x)=\frac{14 x-10}{1-2 x-3 x^{2}} \tag{9}
\end{equation*}
$$

Now we do PFE (partial fraction expansion):

$$
\begin{align*}
& F(x)=\frac{14 x-10}{(1-3 x)(1+x)} \tag{10}\\
& F(x)=\frac{A}{1-3 x}+\frac{B}{1+x} \tag{11}
\end{align*}
$$

Using the formula from class, we get the values $A=4$ and $B=6$. (Alternative: at this point we know that $f_{k}=A 3^{k}+B(-1)^{k}$; this means one can get A, B by inserting the two initial values to obtain a two linear equations in two unknowns; this method is more work though.)

Expanding $F(x)$ back into a series yields:

$$
\begin{equation*}
F(x)=4 \sum_{k=0}^{\infty} 3^{k} x^{k}+6 \sum_{k=0}^{\infty}(-1)^{k} x^{k} \tag{12}
\end{equation*}
$$

From what we read off

$$
\begin{equation*}
F_{k}=4 * 3^{k}+6 *(-1)^{k} \tag{13}
\end{equation*}
$$

Translating back into exponential form yields the final result

$$
\begin{aligned}
g_{n} & =4 * 3^{\log _{2}(n)}+6 *(-1)^{\log _{2}(n)} \\
& =4 * n^{\log _{2}(3)}+6 *(-1)^{\log _{2}(n)}
\end{aligned}
$$

2. (20pts) Proof that $f_{k}=a^{k} * c+\sum_{i=0}^{k-1} a^{i} * s_{k-i}$ solves the recurrence $f_{0}=c, f_{k}=a * f_{k-1}+s_{k}, k \geq 1$.

Simplest solution: Just check that the formula satisfies the recurrence.
Initial condition: $f_{0}=a^{0} * c=c$ as desired.
Recurrence:

$$
\begin{aligned}
a * f_{k-1}+s_{k} & =a\left(a^{k-1} * c+\sum_{i=0}^{k-2} a^{i} * s_{k-1-i}\right)+s_{k} \\
& =a^{k} * c+\left(a \sum_{i=0}^{k-2} a^{i} * s_{k-1-i}\right)+s_{k} \\
& =a^{k} * c+\left(\sum_{i=0}^{k-2} a^{i+1} * s_{k-1-i}\right)+s_{k} \\
& =a^{k} * c+\left(\sum_{i=0+1}^{k-2+1} a^{i+1-1} * s_{k-1-(i-1)}\right)+s_{k} \\
& =a^{k} * c+\left(\sum_{i=1}^{k-1} a^{i} * s_{k-i}\right)+s_{k} \\
& =a^{k} * c+\left(\sum_{i=0}^{k-1} a^{i} * s_{k-i}\right)-a^{0} * s_{k-0}+s_{k} \\
& =a^{k} * c+\sum_{i=0}^{k-1} a^{i} * s_{k-i} \\
& =f_{k}
\end{aligned}
$$

as desired.

Solution by induction:

We prove by induction therefore first proving the initial element

$$
a * f_{k-1}+s_{k}=a^{k} * c+\sum_{i=0}^{k-1} a^{i} * s_{k-i}
$$

with $f_{0}=c$ and $k=1$ yields

$$
a * c+s_{1}=a^{1} * c+\sum_{i=0}^{0} a^{0} * s_{1}
$$

We then move on to proof that it holds for any element via

$$
\begin{aligned}
a * f_{k}+s_{k+1} & =a^{(k+1)} * c+\sum_{i=0}^{k} a^{i} * s_{k+1-i} \\
& =a *\left[a^{k} * c+\sum_{i=0}^{k-1} a^{i} * s_{k-i}\right]+s_{k+1} \\
& =a^{(k+1)} * c+\sum_{i=0}^{k} a^{i} * s_{k+1-i} \\
& =a^{k+1} * c+a * \sum_{i=0}^{k-1} a^{i} * s_{k-i}+s_{k+1} \\
& =a^{k+1} * c+a * \sum_{i=1}^{k+1-1} a^{i-1} * s_{k-(i-1)}+s_{k+1} \\
& =a^{k+1} * c+\sum_{i=1}^{k+1-1} a^{i} * s_{k-(i-1)}+s_{k+1} \\
& =a^{k+1} * c+\sum_{i=0}^{k} a^{i} * s_{k-(i-1)}-a^{0} * s_{k-(0-1)}+s_{k+1} \\
& =a^{k+1} * c+\sum_{i=0}^{k} a^{i} * s_{(k+1)-i)}
\end{aligned}
$$

3. (20pts) You know that $O(n+1)=O(n)$. Similarly, simplify the following as much as possible and briefly justify.
(a) $O\left(2^{n^{2}+1}\right)$
(b) $O\left(2^{n^{2}+n+1}\right)$
(c) $O\left(1.01^{n}+n^{5}\right)$
(d) $O\left(n^{2} m+n \log (n)+m \log (m)\right)$
(e) $O\left(2^{n+\log _{2}(n)}\right)$

Solution:

(a) $O\left(2^{n^{2}+1}\right)=O\left(2^{n^{2}}\right)$, cause in $2^{n^{2}} * 2$ the 2 is a constant factor that can be removed
(b) $O\left(2^{n^{2}+n+1}\right)=O\left(2^{n^{2}+n}\right)$, same logic as above - just that you can not remove the 2^{n} as its not constant
(c) $O\left(1.01^{n}+n^{5}\right)=O\left(1.01^{n}\right), n^{5}$ is $O\left(1.01^{n}\right)$ because $\lim _{n \rightarrow \infty} \frac{n^{5}}{1.01^{n}}=0$
(d) $O\left(n^{2} m+n \log (n)+m \log (m)\right)=O\left(n^{2} m+m \log (m)\right)$ We can remove $n \log (n)$ cause it will be always dominated by n^{2}, while we cannot remove $m \log (m)$ since it is not comparable to either of the other terms.
(e) $O\left(2^{n+\log _{2}(n)}\right)=O\left(2^{n} * 2^{\log (n)}\right)=O\left(n 2^{n}\right)$, similar to (b) we cannot remove any term, only modify it as shown.
4. (30pts) The Strassen algorithm (see http://en.wikipedia.org/wiki/Strassen_algorithm), named after Volker Strassen, showed for the first time that the standard approach for square matrix multiplication, which requires $\Theta\left(n^{3}\right)$ many operations, is not optimal. It works as follows.

We assume for this exercise $n=2^{k}$ and that A, B, C are all $n \times n$. Strassen's algorithm for computing $C=A B$ partitions the matrices into blocks of half the size:

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) \quad C=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

Then first the following seven intermediate matrices are computed:
$M_{1}=\left(A_{1,1}+A_{2,2}\right)\left(B_{1,1}+B_{2,2}\right)$
$M_{2}=\left(A_{2,1}+A_{2,2}\right)\left(B_{1,1}\right)$
$M_{3}=A_{1,1}\left(B_{1,2}-B_{2,2}\right)$
$M_{4}=A_{2,2}\left(B_{2,1}-B_{1,1}\right)$
$M_{5}=\left(A_{1,1}+A_{1,2}\right) B_{2,2}$
$M_{6}=\left(A_{2,1}-A_{1,1}\right)\left(B_{1,1}+B_{1,2}\right)$
$M_{7}=\left(A_{1,2}-A_{2,2}\right)\left(B_{2,1}+B_{2,2}\right)$
and from these the four blocks of C, and hence C, as
$C_{1,1}=M_{1}+M_{4}-M_{5}+M_{7}$
$C_{1,2}=M_{3}+M_{5}$
$C_{2,1}=M_{2}+M_{4}$
$C_{2,2}=M_{1}-M_{2}+M_{3}+M_{6}$
Answer the following:
(a) The above shows that the algorithm decomposes matrix multiplication into u matrix multiplications of half the size and v matrix additions of half the size. What is u and v ?
(b) We define the cost measure $C(n)=(A(n), M(n))$, where $A(n)$ is the number of (scalar) additions and $M(n)$ the number of (scalar) multiplications required for matrix multiplication. First determine recursive formulas for $A(n)$ and $M(n)$ for Strassen's algorithm. Second, solve these to get the exact addition and multiplication count if Strassen's algorithm is applied recursively for all occurring matrix multiplications. Show your work.

Solution:

(a) $u=7$ and $v=18$. A straight forward solution would require 8 matrix multiplications of half the size.
(b) Every matrix multiplication is divided into in 7 matrix multiplications and 18 matrix additions (both of half the size). For matrices of size $1 \times 1,1$ multiplication and no addition is required. Therefore the recurrence for the number of scalar multiplications is

$$
M(n)=7 * M(n / 2), \quad M(1)=1 .
$$

Since the 18 matrix additions of half the size require $18(n / 2)^{2}=(9 / 2) n^{2}$ additions, the recurrence for the number of additions is

$$
A(n)=7 * A(n / 2)+\frac{9}{2} n^{2}, \quad A(1)=0
$$

As usual, we first translate the recurrences by substituting $n=2^{k}, m(k)=M(n)$, and $a(k)=$ $A(n)$:

$$
\begin{aligned}
m(k) & =7 m(k-1), \quad m(0)=1 \\
a(k) & =7 a(k-1)+\frac{9}{2} 4^{k}, \quad a(0)=0 .
\end{aligned}
$$

Now we use the formula proven in task 2 of this exercise sheet. This gives us for the multiplications:

$$
m(k)=7^{k} * 1+\sum_{i=0}^{k-1} 7^{i} * 0=7^{k}
$$

$$
M(n)=7^{\log _{2}(n)}=n^{\log _{2}(7)}
$$

For the additions:

$$
\begin{aligned}
& \begin{aligned}
a(k) & =7^{k} * 0+\sum_{i=0}^{k-1} 7^{i} * \frac{9}{2} *\left(4^{k-i}\right) \\
& =\frac{9}{2} * 4^{k} \sum_{i=0}^{k-1}\left(\frac{7}{4}\right)^{i} \\
& =\frac{9}{2} * 4^{k}\left(\frac{7^{k}}{\frac{7}{4}-1}\right) \\
& =6\left(7^{k}-4^{k}\right)
\end{aligned} \\
& A(n)=6\left(7^{\log _{2}(n)}-4^{\log _{2}(n)}\right)=6 n^{\log _{2}(7)}-6 n^{2}
\end{aligned}
$$

Total operations count is therefore

$$
C(n)=7 n^{\log _{2}(7)}-6 n^{2}=O\left(n^{\log _{2}(7)}\right)
$$

Attached a small table with values calculated for the number of operations.

n	\#Muls	\#Adds
2	7	18
4	49	198
8	343	1674
16	2401	12870
32	16807	94698

