263-2300-00: How To Write Fast Numerical Code Assignment 1

Due Date: Thu March 10 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html
Submission instructions: If you have an electronic version of your assignment (preferably made using $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$, but other forms, including scanned copies are okay), email them to: s11-fastcode@inf.ethz.ch. Paper submissions need to be dropped off at RZ H22.
Late policy: you have 3 late days, but can use at most 2 on one homework. Late submissions have to be emailed to the address above.

1. $(30 \mathrm{pts})$ Solve the recurrence $g_{1}=10, g_{2}=6$,

$$
g_{n}=2 * g_{n / 2}+3 * g_{n / 4}, \quad n=2^{k}, \quad k \geq 2
$$

Solving means determining a closed form for g_{n}.
2. (20pts) Proof that $f_{k}=a^{k} * c+\sum_{i=0}^{k-1} a^{i} * s_{k-i}$ solves the recurrence $f_{0}=c, f_{k}=a * f_{k-1}+s_{k}, k \geq 1$.
3. (20pts) You know that $O(n+1)=O(n)$. Similarly, simplify the following as much as possible and briefly justify.
(a) $O\left(2^{n^{2}+1}\right)$
(b) $O\left(2^{n^{2}+n+1}\right)$
(c) $O\left(1.01^{n}+n^{5}\right)$
(d) $O\left(n^{2} m+n \log (n)+m \log (m)\right)$
(e) $O\left(2^{n+\log _{2}(n)}\right)$
4. (30pts) The Strassen algorithm (see http://en.wikipedia.org/wiki/Strassen_algorithm), named after Volker Strassen, showed for the first time that the standard approach for square matrix multiplication, which requires $\Theta\left(n^{3}\right)$ many operations, is not optimal. It works as follows.
We assume for this exercise $n=2^{k}$ and that A, B, C are all $n \times n$. Strassen's algorithm for computing $C=A B$ partitions the matrices into blocks of half the size:

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) \quad C=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

Then first the following seven intermediate matrices are computed:

$$
\begin{aligned}
& M_{1}=\left(A_{1,1}+A_{2,2}\right)\left(B_{1,1}+B_{2,2}\right) \\
& M_{2}=\left(A_{2,1}+A_{2,2}\right)\left(B_{1,1}\right) \\
& M_{3}=A_{1,1}\left(B_{1,2}-B_{2,2}\right) \\
& M_{4}=A_{2,2}\left(B_{2,1}-B_{1,1}\right) \\
& M_{5}=\left(A_{1,1}+A_{1,2}\right) B_{2,2} \\
& M_{6}=\left(A_{2,1}-A_{1,1}\right)\left(B_{1,1}+B_{1,2}\right) \\
& M_{7}=\left(A_{1,2}-A_{2,2}\right)\left(B_{2,1}+B_{2,2}\right)
\end{aligned}
$$

and from these the four blocks of C, and hence C, as

$$
\begin{aligned}
& C_{1,1}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{1,2}=M_{3}+M_{5} \\
& C_{2,1}=M_{2}+M_{4} \\
& C_{2,2}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Answer the following:
(a) The above shows that the algorithm decomposes matrix multiplication into u matrix multiplications of half the size and v matrix additions of half the size. What is u and v ?
(b) We define the cost measure $C(n)=(A(n), M(n)$), where $A(n)$ is the number of (scalar) additions and $M(n)$ the number of (scalar) multiplications required for matrix multiplication. First determine recursive formulas for $A(n)$ and $M(n)$ for Strassen's algorithm. Second, solve these to get the exact addition and multiplication count if Strassen's algorithm is applied recursively for all occurring matrix multiplications. Show your work.

