
HTA’s
NOV
30

PROGRAMMING FOR PARALLELISM
AND LOCALITY WITH

PRESENTATION BY ROMAN FRIGG

Written at UIUC1, Universidade da Coruna2 and IBM T.J. Watson Research Center3 by
Ganesh Bikshandi1, Jia Guo, Daniel Hoeflinger1, Gheorghe Almasi3, Basilio B. Fraguela2, María J.
Garzarán1, David Padua1 and Christoph von Praun3

PAPER PUBLISHED AT PPOPP MARCH 2006

PROGRAMMING
TODAY’S
SYSTEMS

2|

SCALABILITY PORTABILITY

PRODUCTIVITY

PROGRAMMING
TODAY’S
SYSTEMS

2|

SCALABILITY PORTABILITY

PRODUCTIVITY

Parallelism

PROGRAMMING
TODAY’S
SYSTEMS

2|

SCALABILITY PORTABILITY

PRODUCTIVITY

Parallelism Locality

PROGRAMMING
TODAY’S
SYSTEMS

2|

SCALABILITY PORTABILITY

PRODUCTIVITY

Parallelism Locality

Abstractions

PROGRAMMING
TODAY’S
SYSTEMS

2|

SCALABILITY PORTABILITY

PRODUCTIVITY

Parallelism Locality

Abstractions

HTA’s

CLASSIFICATION

3|

LIBRARIES LANGUAGES

HTA

MPI/PVM

GAS

POET

POOMA X10 CAF
ZPL

TITANIUM

UPC HPFCLASSIFICATION

3|

LIBRARIES LANGUAGES

HTA

MPI/PVM

GAS

POET

POOMA X10 CAF
ZPL

TITANIUM

UPC HPFCLASSIFICATION

3|

‣ Library
‣ Matlab & C++

‣ Single threaded, global view

TALK
OVERVIEW

INTRO
1

4|

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

1

2

4|

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

1

2

3

4|

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

EVALUATION

1

2

3

4

4|

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

EVALUATION

CONCLUSIONS

1

2

3

4

5

4|

RECURSIVE
TILING

‣ distributed

im
ag
e
so
ur
ce
: p
ap
er

5|
HOW HTA’s

WORK 2

9 H TA3/20/06

Hierarchically Tiled Array

9 H TA3/20/06

Hierarchically Tiled Array

‣ local

‣ local

CONSTRUCT
HTA FROM
6x6 MATRIX

6|
HOW HTA’s

WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

T1 = hta(,{ , })

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

T1 = hta(,{ , })M

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

T1 = hta(,{ , })M [1 3 5]

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

T1 = hta(,{ , })M [1 3 5]

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2]

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2]

1

2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2] [1 3]

1

2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2] [1 3]

1 3

1

2

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2] [1 3]

1 3

1

2

[2 2]

CONSTRUCT
HTA FROM
6x6 MATRIX

6|

1

3

5

1 3 5

T1 = hta(,{ , })M [1 3 5] [1 3 5]

P1 P2

P3 P4

HOW HTA’s
WORK 2

T2 = hta(,{ , },)T1 [1 2] [1 3]

1 3

1

2

[2 2]

HTA
ACCESS

7|

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

C(6,4)=

HTA
ACCESS

7|

C(1:2,3:6)

C{2,1}{1,2}(2,2)

C=

HOW HTA’s
WORK 2

C(6,4)= C{2,1}(2,4)=

ASSIGNMENTS
& BINARY
OPERATORS

8|

VALID OPERATIONS

Scalar

⊕
Array

HTA

ASSIGNMENTS
& BINARY
OPERATORS

9|

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

*
4x4 HTA 2x3 Array

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

u*
4x4 HTA 2x3 Array

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

*
4x4 HTA 3x2 Array

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

v*
4x4 HTA 3x2 Array

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

*
4x4 HTA Scalar

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

u*
4x4 HTA Scalar

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

*
4x4 HTA 4x4 HTA

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

u*
4x4 HTA 4x4 HTA

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

=
4x4 HTA 4x4 HTA

VALID OPERATION ?

ASSIGNMENTS
& BINARY
OPERATORS

9|

v
=

4x4 HTA 4x4 HTA

VALID OPERATION ?

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

CONCLUSIONS

1

2

3

5

10|

EVALUATION

4

TWO
KINDS OF

OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

Assignments, repmat,
circshift, permute

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

g(x)g(x)g(x)g(x)g(x)

Assignments, repmat,
circshift, permute

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

g(x) g(x)

g(x)g(x)

Assignments, repmat,
circshift, permute

f(x)
TWO

KINDS OF
OPERATIONS

11| HTA OPERATIONS
& APPLICATIONS

3

GLOBAL
COMPUTATIONS

COMMUNICATION

OPERATIONS

P1

P3

P2

P3

P1

P3

P2

P3

g(x) g(x)

g(x)g(x)

Assignments, repmat,
circshift, permute

parHTA(@g(x), H)

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A,B,C

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

circshift()
circshift()

circshift()
circshift()

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

Initialization

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

CANNON’S
ALGORITHM

12| HTA OPERATIONS
& APPLICATIONS

3

Initialization

Iteration

function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11

B22B21

B31 B32 B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13B12

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11

B22B21

B31 B32 B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13B12

i=2

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11

B22B21

B31 B32 B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13B12

i=2

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11

B22B21

B31 B32 B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13B12

i=2

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=2

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=3

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=3

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=3

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=3

B23

A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32 B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13B12

i=3

B23A32

13| HTA OPERATIONS
& APPLICATIONS

3

A11 A12 A13

A22 A23

A33

A21

A31

B11 B22

B21

B31

B32

B33

Initializationfor i=2:m
A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B(:,i} = circshift(B{:,i}, [-(i-1), 0]);

end

B13

B12

i=3

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33 B23B12

B13B21

B31

B32

B11 B22 B33

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33 B23B12

B13B21

B31

B32

B11 B22 B33

k=1

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33 B23B12

B13B21

B31

B32

B11 B22 B33

k=1

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33 B23B12

B13B21

B31

B32

B11 B22 B33

k=1

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33 B23B12

B13B21

B31

B32

B11 B22 B33

k=1

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33

B23B12

B13B21

B31

B32

B11 B22 B33

k=1

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33

B23B12

B13B21

B31

B32

B11 B22 B33

k=2

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33

B23B12

B13B21

B31

B32

B11 B22 B33

k=2

C32

C11 C12 C13

C22 C23

C33

C21

C31

14| HTA OPERATIONS
& APPLICATIONS

3

A32

A12 A13

A23 A21

A31

Iterationfor k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

A11

A22

A33

B23B12

B13B21

B31

B32

B11 B22 B33

k=2

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

CONCLUSIONS

1

2

3

5

15|

EVALUATION

4

NASA ADVANCED SUPERCOMPUTING BENCHMARK

im
ag
e
so
ur
ce
: p
ap
er

16| EVALUATION

4

Nprocs EP (CLASS C) FT (CLASS B) CG (CLASS C) MG (CLASS B) LU (CLASS B)
Fortran+ Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab +
MPI HTA MPI HTA MPI HTA MPI HTA MPI HTA

1 901.6 3556.9 136.8 657.4 3606.9 3812.0 26.9 828.0 15.7 245.1
4 273.1 888.8 109.1 274.0 362.0 1750.9 17.0 273.8 6.3 60.5
8 136.3 447.0 65.5 159.3 123.4 823.6 9.6 151.3 2.9 29.9
16 68.6 224.8 37.2 87.2 89.5 375.2 4.8 87.0 1.2 16.0
32 34.7 112.0 20.7 42.9 48.4 250.3 3.3 54.9 1.1 9.8
64 17.1 56.7 10.4 24.0 44.5 148.0 1.6 50.4 1.3 7.1
128 8.5 29.1 5.9 15.6 30.8 123.0 1.4 38.5 1.6 N/A

Table 1. Execution times in seconds for some of the applications in the NAS benchmarks for Fortran+MPI versus MATLAB +HTA. The
execution time for 1 processor corresponds to the serial application in Fortran or MATLAB , without MPI or HTAs.

tation not involving distributed HTA operations. Since all data are
replicated, the behavior in each processor is exactly the same as
what would be the behavior of the client except that no communi-
cation is necessary to use data from the main thread in operations
on distributed HTAs. On invocation of a method on a distributed
HTA, each processor applies the corresponding operation to the
tiles of the HTA it owns.
The incorporation of HTAs in MATLAB produced an explicitly

parallel programming extension of MATLAB that integrates seam-
lessly with the language. Most other parallel MATLAB extensions
either make use of extraneous primitives (MultiMATLAB [24]) or
do not allow explicit parallel programming (Matlab*P [17]). Also,
the incorporation of HTA gives MATLAB a mechanism to access
and operate on tiles much more powerful than that provided by their
native . The main disadvantage of the implementa-
tion is that the immense overhead of the interpreted MATLAB lim-
its the efficiency of many applications. The three main sources of
this overhead are:

Excessive creation of temporary variables.MATLAB creates tem-
poraries to hold the partial results of expression, which signifi-
cantly slows down the programs.
Frequent replication of data. MATLAB passes parameters by
value and assignment statements replicate the data, and
Interpretation of instructions. The overhead resulting from the in-
terpretation of instructions is more pronounced when the compu-
tation relies mainly on scalar operations.

Table 1 presents the execution time for Fortran+MPI and our
MATLAB +HTA implementations of most of the NAS bench-
marks. The table shows the execution times in seconds when the
applications execute on a cluster of up-to 128 processors. Each pro-
cessor is a 3.2 GHz Intel Xeon connected through a Gigabit Ether-
net. For the NAS benchmarks we used the version 3.1, and com-
piled them with the INTEL ifort compiler, version 8.1, and flag
-03. For MATLAB we used the version 7.0.1 (R14). Finally, for
MPI we used MPI-LAM [6].
The execution time for 1 processor corresponds to the serial

execution of the pure Fortran or MATLAB code without MPI or
HTAs. Results in Table 1 correspond to the class C input for EP
and CG, and class B for MG, FT and LU.
As can be seen in the table, in the case of EP and FT the parallel

MATLAB code takes advantage of parallelism leading to execution
times that are of the same magnitude as those of the Fortran+MPI
code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob-
tains super-linear speedups when the number of processors is 64 or
smaller. However, for MG and LU the performance of the sequen-
tial MATLAB implementation was slow and, in the case of MG,

the parallel MATLAB does not improve upon the serial Fortran
version. Similarly, for BT (not shown) the serial MATLAB version
runs so slow that, even the parallel version is not comparable with
its sequential Fotran counterpart. Overall, for EP, FT and CG where
the sequential MATLAB version runs 1 to 5 times slower than the
Fortran version, the parallel MATLAB implementation does rea-
sonably well improving upon the serial Fortran version. In these
cases, it could be said that parallelism at least compensates for the
interpretation overhead. For 128 processors the parallel MATLAB
obtains speedups of 30.9, 8.8 and 29.3 over the sequential Fortran
counterpart for EP, FT and CG, respectively.

4.2 C++
In the C++ implementation, HTAs are represented as compos-
ite objects with methods to operate on both distributed and non-
distributed HTAs. As in the case of MATLAB , MPI is used
for communication and, while the programming model is single
threaded, HTA C++ programs execute in SPMD form. To facil-
itate programming, our C++ implementation enforces an alloca-
tion/deallocation policy through reference counting as follows: (1)
HTAs are allocated through factory methods on the heap. The
methods return a handle which is assigned to a (stack allocated)
variable. (2) All accesses to the HTA occur through this handle,
which itself is small in size and typically passed by value across
procedure boundaries. (3) Once all handles to an HTA disappear
from the stack, the HTA and its related structures are automatically
deleted from memory. This design permits sharing of sub-trees
among HTAs and also precludes deallocation errors. Moreover, the
temporary arrays that are for instance created during the partial
evaluation of expressions, are handled through this mechanism and
deleted automatically as early as possible.
Performance is one of the main goals of our C++ implementa-

tion. Methods were optimized and whenever possible specialized
for specific cases. Also, the user is given control over the memory
layout of non-distributed HTAs. In MATLAB the layout was in the
hands of the system and the user had no way of influencing it. Fi-
nally, to enable efficient access to scalar components of HTAs, the
implementation was organized to guarantee that hot methods were
inlined. This last strategy enabled the codes written using the li-
brary to have performance similar to that of traditional (non-HTAs)
implementations. For example, the code in Figure 13 represents the
multiplication of two two-dimensional arrays recursively tiled. The
code is similar to the MATLAB code shown Figure 8.
The code in Figure 13 shows the declaration of the HTAs , ,

and . The function is the factory method that creates the
HTAs. It takes as input the complete tiling information for each
HTA, number of tiles in each dimension , tile
size , and memory layout (

, or). The function is recursive. When the input

53

NASA ADVANCED SUPERCOMPUTING BENCHMARK

im
ag
e
so
ur
ce
: p
ap
er

16| EVALUATION

4

Nprocs EP (CLASS C) FT (CLASS B) CG (CLASS C) MG (CLASS B) LU (CLASS B)
Fortran+ Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab +
MPI HTA MPI HTA MPI HTA MPI HTA MPI HTA

1 901.6 3556.9 136.8 657.4 3606.9 3812.0 26.9 828.0 15.7 245.1
4 273.1 888.8 109.1 274.0 362.0 1750.9 17.0 273.8 6.3 60.5
8 136.3 447.0 65.5 159.3 123.4 823.6 9.6 151.3 2.9 29.9
16 68.6 224.8 37.2 87.2 89.5 375.2 4.8 87.0 1.2 16.0
32 34.7 112.0 20.7 42.9 48.4 250.3 3.3 54.9 1.1 9.8
64 17.1 56.7 10.4 24.0 44.5 148.0 1.6 50.4 1.3 7.1
128 8.5 29.1 5.9 15.6 30.8 123.0 1.4 38.5 1.6 N/A

Table 1. Execution times in seconds for some of the applications in the NAS benchmarks for Fortran+MPI versus MATLAB +HTA. The
execution time for 1 processor corresponds to the serial application in Fortran or MATLAB , without MPI or HTAs.

tation not involving distributed HTA operations. Since all data are
replicated, the behavior in each processor is exactly the same as
what would be the behavior of the client except that no communi-
cation is necessary to use data from the main thread in operations
on distributed HTAs. On invocation of a method on a distributed
HTA, each processor applies the corresponding operation to the
tiles of the HTA it owns.
The incorporation of HTAs in MATLAB produced an explicitly

parallel programming extension of MATLAB that integrates seam-
lessly with the language. Most other parallel MATLAB extensions
either make use of extraneous primitives (MultiMATLAB [24]) or
do not allow explicit parallel programming (Matlab*P [17]). Also,
the incorporation of HTA gives MATLAB a mechanism to access
and operate on tiles much more powerful than that provided by their
native . The main disadvantage of the implementa-
tion is that the immense overhead of the interpreted MATLAB lim-
its the efficiency of many applications. The three main sources of
this overhead are:

Excessive creation of temporary variables.MATLAB creates tem-
poraries to hold the partial results of expression, which signifi-
cantly slows down the programs.
Frequent replication of data. MATLAB passes parameters by
value and assignment statements replicate the data, and
Interpretation of instructions. The overhead resulting from the in-
terpretation of instructions is more pronounced when the compu-
tation relies mainly on scalar operations.

Table 1 presents the execution time for Fortran+MPI and our
MATLAB +HTA implementations of most of the NAS bench-
marks. The table shows the execution times in seconds when the
applications execute on a cluster of up-to 128 processors. Each pro-
cessor is a 3.2 GHz Intel Xeon connected through a Gigabit Ether-
net. For the NAS benchmarks we used the version 3.1, and com-
piled them with the INTEL ifort compiler, version 8.1, and flag
-03. For MATLAB we used the version 7.0.1 (R14). Finally, for
MPI we used MPI-LAM [6].
The execution time for 1 processor corresponds to the serial

execution of the pure Fortran or MATLAB code without MPI or
HTAs. Results in Table 1 correspond to the class C input for EP
and CG, and class B for MG, FT and LU.
As can be seen in the table, in the case of EP and FT the parallel

MATLAB code takes advantage of parallelism leading to execution
times that are of the same magnitude as those of the Fortran+MPI
code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob-
tains super-linear speedups when the number of processors is 64 or
smaller. However, for MG and LU the performance of the sequen-
tial MATLAB implementation was slow and, in the case of MG,

the parallel MATLAB does not improve upon the serial Fortran
version. Similarly, for BT (not shown) the serial MATLAB version
runs so slow that, even the parallel version is not comparable with
its sequential Fotran counterpart. Overall, for EP, FT and CG where
the sequential MATLAB version runs 1 to 5 times slower than the
Fortran version, the parallel MATLAB implementation does rea-
sonably well improving upon the serial Fortran version. In these
cases, it could be said that parallelism at least compensates for the
interpretation overhead. For 128 processors the parallel MATLAB
obtains speedups of 30.9, 8.8 and 29.3 over the sequential Fortran
counterpart for EP, FT and CG, respectively.

4.2 C++
In the C++ implementation, HTAs are represented as compos-
ite objects with methods to operate on both distributed and non-
distributed HTAs. As in the case of MATLAB , MPI is used
for communication and, while the programming model is single
threaded, HTA C++ programs execute in SPMD form. To facil-
itate programming, our C++ implementation enforces an alloca-
tion/deallocation policy through reference counting as follows: (1)
HTAs are allocated through factory methods on the heap. The
methods return a handle which is assigned to a (stack allocated)
variable. (2) All accesses to the HTA occur through this handle,
which itself is small in size and typically passed by value across
procedure boundaries. (3) Once all handles to an HTA disappear
from the stack, the HTA and its related structures are automatically
deleted from memory. This design permits sharing of sub-trees
among HTAs and also precludes deallocation errors. Moreover, the
temporary arrays that are for instance created during the partial
evaluation of expressions, are handled through this mechanism and
deleted automatically as early as possible.
Performance is one of the main goals of our C++ implementa-

tion. Methods were optimized and whenever possible specialized
for specific cases. Also, the user is given control over the memory
layout of non-distributed HTAs. In MATLAB the layout was in the
hands of the system and the user had no way of influencing it. Fi-
nally, to enable efficient access to scalar components of HTAs, the
implementation was organized to guarantee that hot methods were
inlined. This last strategy enabled the codes written using the li-
brary to have performance similar to that of traditional (non-HTAs)
implementations. For example, the code in Figure 13 represents the
multiplication of two two-dimensional arrays recursively tiled. The
code is similar to the MATLAB code shown Figure 8.
The code in Figure 13 shows the declaration of the HTAs , ,

and . The function is the factory method that creates the
HTAs. It takes as input the complete tiling information for each
HTA, number of tiles in each dimension , tile
size , and memory layout (

, or). The function is recursive. When the input

53

Too many
numbers !

0 32 64 96 128
0

32

64

96

128

EP

25 %

100 %

Matlab+HTA Fortran+MPI

ebarassingly
parallel

processors

speedup factor

sequential speed

17|

128 3.2 GHz Intel Xeons, Gigabit Ethernet

EVALUATION

4

Matlab+HTA Fortran+MPI

0 32 64 96 128
0

32

64

96

128

EP LINEAR
SPEEDUP

25 %

100 %

Matlab+HTA Fortran+MPI

ebarassingly
parallel

processors

speedup factor

sequential speed

17|

128 3.2 GHz Intel Xeons, Gigabit Ethernet

EVALUATION

4

Matlab+HTA Fortran+MPI

0 32 64 96 128
0

32

64

96

128

FFT

21 %

100 %

Matlab+HTA Fortran+MPI

fast fourier
transform

18| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0 32 64 96 128
0

32

64

96

128

FFT

HTA’s
SCALE
BETTER

21 %

100 %

Matlab+HTA Fortran+MPI

fast fourier
transform

18| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0 32 64 96 128
0

32

64

96

128

CG
95 % 100 %

Matlab+HTA Fortran+MPI

conjugate
gradient

19| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0 32 64 96 128
0

32

64

96

128

CG MPI
SUPER
L INEAR
SPEEDUP

95 % 100 %

Matlab+HTA Fortran+MPI

conjugate
gradient

19| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0

32

64

96

128

0 32 64 96 128

MG

3 %

100 %

Matlab+HTA Fortran+MPI

multi
grid

20| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

HTA’s

SLOW

0 32 64 96 128
0

32

64

96

128

MG

3 %

100 %

Matlab+HTA Fortran+MPI

multi
grid

20| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0

32

64

96

128

0 32 64 96 128

LU

6 %

100 %

Matlab+HTA Fortran+MPI

lu
factorization

21| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0

32

64

96

128

0 32 64 96 128

LU

SLOW
AGAIN

6 %

100 %

Matlab+HTA Fortran+MPI

lu
factorization

21| EVALUATION

4

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

0 32 64 96 128
0

32

64

96

128

LU

SLOW
AGAIN

6 %

100 %

Matlab+HTA Fortran+MPI

lu
factorization

21| EVALUATION

4

no data fo
r 128 proce

ssors

128 3.2 GHz Intel Xeons, Gigabit Ethernet

Matlab+HTA Fortran+MPI

processors

speedup factor

sequential speed

PERFORMANCE
OF C++ HTA’s

22| EVALUATION

4

MMM

504 1008 2016 3024 4032
0

1000

2000

3000

4000

matrix size

MFLOPS Naive 3 loops HTA naive Tiled 6 loops
HTA+ATLAS ATLAS Intel MKL

Intel Pentium 4, 3.0 GHz, 8KB L1 cache

PERFORMANCE
OF C++ HTA’s

22| EVALUATION

4

MMM

504 1008 2016 3024 4032
0

1000

2000

3000

4000

matrix size

MFLOPS Naive 3 loops HTA naive Tiled 6 loops
HTA+ATLAS ATLAS Intel MKL

Intel Pentium 4, 3.0 GHz, 8KB L1 cache

8-13.5%

LINES OF
CODE

COMPARISON

ep cg mg ft lu
0

200

400

600

800

1000

1200

lin
es

 o
f c

od
e

HTA MPI
HTA

MPI

HTA

MPI

HTA

MPI
HTA

MPI

Computation
Communication
Data Decomposition

im
ag
e
so
ur
ce
: p
ap
er

23| EVALUATION

4

TALK
OVERVIEW

INTRO

HOW HTA’s
WORK

HTA OPERATIONS
& APPLICATIONS

CONCLUSIONS

1

2

3

5

24|

EVALUATION

4

CONCLUSIONS

25| CONCLUSIONS

5

SCALABILITY PORTABILITY

PRODUCTIVITY

HTA’s

FURTHER
INFORMATION

26| CONCLUSIONS

5

http://polaris.cs.uiuc.edu/hta/

http://polaris.cs.uiuc.edu/hta/
http://polaris.cs.uiuc.edu/hta/

THANKS.
FOR YOUR ATTENTION

&AQ
PUT YOUR QUESTIONS

