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Nprocs EP (CLASS C) FT (CLASS B) CG (CLASS C) MG (CLASS B) LU (CLASS B)
Fortran+ Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab +
MPI HTA MPI HTA MPI HTA MPI HTA MPI HTA

1 901.6 3556.9 136.8 657.4 3606.9 3812.0 26.9 828.0 15.7 245.1
4 273.1 888.8 109.1 274.0 362.0 1750.9 17.0 273.8 6.3 60.5
8 136.3 447.0 65.5 159.3 123.4 823.6 9.6 151.3 2.9 29.9
16 68.6 224.8 37.2 87.2 89.5 375.2 4.8 87.0 1.2 16.0
32 34.7 112.0 20.7 42.9 48.4 250.3 3.3 54.9 1.1 9.8
64 17.1 56.7 10.4 24.0 44.5 148.0 1.6 50.4 1.3 7.1
128 8.5 29.1 5.9 15.6 30.8 123.0 1.4 38.5 1.6 N/A

Table 1. Execution times in seconds for some of the applications in the NAS benchmarks for Fortran+MPI versus MATLAB +HTA. The
execution time for 1 processor corresponds to the serial application in Fortran or MATLAB , without MPI or HTAs.

tation not involving distributed HTA operations. Since all data are
replicated, the behavior in each processor is exactly the same as
what would be the behavior of the client except that no communi-
cation is necessary to use data from the main thread in operations
on distributed HTAs. On invocation of a method on a distributed
HTA, each processor applies the corresponding operation to the
tiles of the HTA it owns.
The incorporation of HTAs in MATLAB produced an explicitly

parallel programming extension of MATLAB that integrates seam-
lessly with the language. Most other parallel MATLAB extensions
either make use of extraneous primitives (MultiMATLAB [24]) or
do not allow explicit parallel programming (Matlab*P [17]). Also,
the incorporation of HTA gives MATLAB a mechanism to access
and operate on tiles much more powerful than that provided by their
native . The main disadvantage of the implementa-
tion is that the immense overhead of the interpreted MATLAB lim-
its the efficiency of many applications. The three main sources of
this overhead are:

Excessive creation of temporary variables.MATLAB creates tem-
poraries to hold the partial results of expression, which signifi-
cantly slows down the programs.
Frequent replication of data. MATLAB passes parameters by
value and assignment statements replicate the data, and
Interpretation of instructions. The overhead resulting from the in-
terpretation of instructions is more pronounced when the compu-
tation relies mainly on scalar operations.

Table 1 presents the execution time for Fortran+MPI and our
MATLAB +HTA implementations of most of the NAS bench-
marks. The table shows the execution times in seconds when the
applications execute on a cluster of up-to 128 processors. Each pro-
cessor is a 3.2 GHz Intel Xeon connected through a Gigabit Ether-
net. For the NAS benchmarks we used the version 3.1, and com-
piled them with the INTEL ifort compiler, version 8.1, and flag
-03. For MATLAB we used the version 7.0.1 (R14). Finally, for
MPI we used MPI-LAM [6].
The execution time for 1 processor corresponds to the serial

execution of the pure Fortran or MATLAB code without MPI or
HTAs. Results in Table 1 correspond to the class C input for EP
and CG, and class B for MG, FT and LU.
As can be seen in the table, in the case of EP and FT the parallel

MATLAB code takes advantage of parallelism leading to execution
times that are of the same magnitude as those of the Fortran+MPI
code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob-
tains super-linear speedups when the number of processors is 64 or
smaller. However, for MG and LU the performance of the sequen-
tial MATLAB implementation was slow and, in the case of MG,

the parallel MATLAB does not improve upon the serial Fortran
version. Similarly, for BT (not shown) the serial MATLAB version
runs so slow that, even the parallel version is not comparable with
its sequential Fotran counterpart. Overall, for EP, FT and CG where
the sequential MATLAB version runs 1 to 5 times slower than the
Fortran version, the parallel MATLAB implementation does rea-
sonably well improving upon the serial Fortran version. In these
cases, it could be said that parallelism at least compensates for the
interpretation overhead. For 128 processors the parallel MATLAB
obtains speedups of 30.9, 8.8 and 29.3 over the sequential Fortran
counterpart for EP, FT and CG, respectively.

4.2 C++
In the C++ implementation, HTAs are represented as compos-
ite objects with methods to operate on both distributed and non-
distributed HTAs. As in the case of MATLAB , MPI is used
for communication and, while the programming model is single
threaded, HTA C++ programs execute in SPMD form. To facil-
itate programming, our C++ implementation enforces an alloca-
tion/deallocation policy through reference counting as follows: (1)
HTAs are allocated through factory methods on the heap. The
methods return a handle which is assigned to a (stack allocated)
variable. (2) All accesses to the HTA occur through this handle,
which itself is small in size and typically passed by value across
procedure boundaries. (3) Once all handles to an HTA disappear
from the stack, the HTA and its related structures are automatically
deleted from memory. This design permits sharing of sub-trees
among HTAs and also precludes deallocation errors. Moreover, the
temporary arrays that are for instance created during the partial
evaluation of expressions, are handled through this mechanism and
deleted automatically as early as possible.
Performance is one of the main goals of our C++ implementa-

tion. Methods were optimized and whenever possible specialized
for specific cases. Also, the user is given control over the memory
layout of non-distributed HTAs. In MATLAB the layout was in the
hands of the system and the user had no way of influencing it. Fi-
nally, to enable efficient access to scalar components of HTAs, the
implementation was organized to guarantee that hot methods were
inlined. This last strategy enabled the codes written using the li-
brary to have performance similar to that of traditional (non-HTAs)
implementations. For example, the code in Figure 13 represents the
multiplication of two two-dimensional arrays recursively tiled. The
code is similar to the MATLAB code shown Figure 8.
The code in Figure 13 shows the declaration of the HTAs , ,

and . The function is the factory method that creates the
HTAs. It takes as input the complete tiling information for each
HTA, number of tiles in each dimension , tile
size , and memory layout (

, or ). The function is recursive. When the input

53
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code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob-
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