PROGRAMMING FOR PARALLELISM AND LOCALITY WITH

PAPER PUBLISHED AT PPOPP MARCH 2006 PRESENTATION BY ROMAN FRIGG

Written at UIUC', Universidade da Coruna² and IBM T.J. Watson Research Center by Ganesh Bikshandil', Jia Guo, Daniel Hoeflinger', Gheorghe Almasi³, Basilio B. Fraguela², María J.

CLASSIFICATION

INTRO
 OVERVIEW

OVERVIEW

TALK OVERVIEW

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\mathrm{T} 1=\text { htal },\{
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\mathrm{T} 1=\operatorname{hta}(\mathrm{M},\{
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$T 1=\operatorname{hta}\left(M,\left\{\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right.\right.$,

CONSTRUCT HTA FROM 6x6 MATRIX

$$
T 1=\operatorname{hta}\left(M,\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right], \quad\right\}\right)
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
T 1=\operatorname{hta}\left(M,\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right)
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
T 1=\operatorname{hta}\left(M,\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right)
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(,\left\{\begin{array}{lll}
& ,
\end{array},\right.\right.
\end{aligned}
$$

CONSTRUCT HTA FROM 6x6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\begin{array}{lll}
& ,
\end{array}\right\},\right.
\end{aligned}
$$

CONSTRUCT HTA FROM 6x6 MATRIX

$$
\left.\begin{array}{l}
\mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
\mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\right.\right.
\end{array}\right\},
$$

CONSTRUCT HTA FROM 6x6 MATRIX

$$
\left.\begin{array}{l}
\mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
\mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\right.\right.
\end{array}\right\},
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 3
\end{array}\right]\right\},\right.
\end{aligned}
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 3
\end{array}\right]\right\},\right.
\end{aligned}
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 3
\end{array}\right]\right\},\left[\begin{array}{ll}
2 & 2
\end{array}\right]\right)
\end{aligned}
$$

CONSTRUCT HTA FROM 6×6 MATRIX

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{hta}\left(\mathrm{M},\left\{\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 5
\end{array}\right]\right\}\right) \\
& \mathrm{T} 2=\operatorname{hta}\left(\mathrm{T} 1,\left\{\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 3
\end{array}\right]\right\},\left[\begin{array}{ll}
2 & 2
\end{array}\right]\right)
\end{aligned}
$$

CONSTRUCT HTA FROM 6×6 MATRIX

π
WORK 2
$C(1: 2,3: 6)$

HTA
 ACCESS
 $C=$

$C(1: 2,3: 6)$

$C(1: 2,3: 6)$

$\mathrm{C}\{2,1\}\{1,2\} \mid(2,2)$

$\mathrm{C}\{2,1\}\{1,2\} \mid(2,2)$
$C(1: 2,3: 6)$

$\mathrm{C}\{2,1\}\{1,2\}(2,2)$

$\mathrm{C}\{2,1\}\{1,2\}(2,2)$

$\mathrm{C}\{2,1\}\{1,2\}(2,2)$

$\mathrm{C}\{2,1\}\{1,2\} \mid(2,2)$

$\mathrm{C}\{2,1\}\{1,2\} \mid(2,2)$

$\mathrm{C}\{2,1\}\{1,2\} \mid(2,2)$

$C\{2,1\}\{1,2\}(2,2)$

$C\{2,1\}\{1,2\}(2,2)=\mathrm{C}(6,4)=\mathrm{C}\{2,1\}(2,4)$

VALID OPERATIONS

ASSIGNMENTS \& BINARY OPERATORS

VALID OPERATION?

ASSIGNMENTS \& BINARY
OPERATORS

VALID OPERATION?

ASSIGNMENTS

\& BINARY
 OPERATORS

VALID OPERATION?

VALID OPERATION?

ASSIGNMENTS

\& BINARY
 OPERATORS

\&i:8
 *

 4×4 HTA
 3×2 Array

VALID OPERATION?

ASSIGNMENTS \& BINARY OPERATORS

VALID OPERATION?

ASSIGNMENTS \& BINARY
OPERATORS

*

4×4 HTA

Scalar

VALID OPERATION?

VALID OPERATION?

ASSIGNMENTS

*
 4×4 HTA

VALID OPERATION ?

VALID OPERATION?

ASSIGNMENTS

\& BINARY OPERATORS

VALID OPERATION?

ASSIGNMENTS \& BINARY OPERATORS

OVERVEW :

COMMUNICATION OPERATIONS

凰

GLOBAL
COMPUTATIONS

KINDS OF OPERATIONS

COMMUNICATION OPERATIONS

GLOBAL
COMPUTATIONS

PI

 P2P3 P3

Assignments, repmat, circshift, permute

COMMUNICATION OPERATIONS

COMPUTATIONS

Assignments, repmat, circshift, permute

COMMUNICATION OPERATIONS

Assignments, repmat, circshift, permute

parHTAl@g(x), H)


```
function C = cannon(A,B,C)
for i=2:m Initialization
    A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
    B(:,i} = circshift(B{:,i}, [-(i-1), 0]);
end
for k=1:m
    C = C + A * B;
    A = circshift(A, [0, -1]);
    B = circshift(B, [-1, 0]);
end
```



```
function C = cannon(A,B,C)
```



```
for i=2:m Initialization
    A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
    B(:,i} = circshift(B{:,i}, [-(i-1), 0]);
end
```

A_{11}	A_{12}	A_{13}				
A_{21}	A_{22}	A_{23}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{12}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{22}	B_{23}				
B_{31}	B_{32}	B_{33}				

Λ

$\mathrm{i}=2$

for $i=2: m$

$A\{i,:\}=\operatorname{circshift}(A\{i,:\},[0,-(i-1)]) ;$
$B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ;$
end

A_{11}	A_{12}	A_{13}				
A_{21}	A_{22}	A_{23}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{12}	B_{13}
:---	:---	:---	:---	:---		
B_{21}	B_{22}	B_{23}				
B_{31}	B_{32}	B_{33}				

$\mathrm{i}=2$

for $i=2: m$

$A\{i,:\}=\operatorname{circshift}(A\{i,:\},[0,-(i-1)]) ;$
$B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ;$
end

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{12}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{22}	B_{23}				
B_{31}	B_{32}	B_{33}				

$$
\begin{aligned}
& \mathrm{i}=2 \\
& \text { for } i=2: m \quad \text { Initialization } \\
& \text { A\{i,: \} }=\operatorname{circshift}(A\{i,:\},[0,-(i-1)]) \text {; } \\
& B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ; \\
& \text { end }
\end{aligned}
$$

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{12}	B_{13}
:---	:---	:---	:---	:---		
B_{21}	B_{22}	B_{23}				
B_{31}	B_{32}	B_{33}				

$$
\begin{aligned}
& \mathrm{i}=2 \\
& \text { for } i=2: m \quad \text { Initialization } \\
& \text { A\{i,: \} }=\operatorname{circshift}(A\{i,:\},[0,-(i-1)]) \text {; } \\
& B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ; \\
& \text { end }
\end{aligned}
$$

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{22}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{23}				
B_{31}	B_{12}	B_{33}				

$\mathrm{i}=3$
for $i=2: m$

A	$i,:\}$
$B(:, i\}$	
end	

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{31}	A_{32}	A_{33}	\quad	B_{11}	B_{22}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{23}				
B_{31}	B_{12}	B_{33}				

A
$\mathrm{i}=3$
for $i=2: m$

A	$i,:\}$
$B(:, i\}$	
end	

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{32}	A_{33}	A_{31}	\quad	B_{11}	B_{22}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{23}				
B_{31}	B_{12}	B_{33}				

A
$\mathrm{i}=3$
for $i=2: m$

A	$i,:\}$
$B(:, i\}$	
end	

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{33}	A_{31}	A_{32}	\quad	B_{11}	B_{22}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{23}				
B_{31}	B_{12}	B_{33}				

$\mathrm{i}=3$

| for $i=2: m$ | |
| ---: | :--- | ---: |
| $A\{i,:\}=\operatorname{circshift}(A\{i,:\}$, | $[0,-(i-1)]) ;$ |
| $B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ;$ | |
| end | |

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{33}	A_{31}	A_{32}	\quad	B_{11}	B_{22}	B_{13}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{23}				
B_{31}	B_{12}	B_{33}				

A
$\mathrm{i}=3$

| for $i=2: m$ | |
| ---: | :--- | ---: |
| $A\{i,:\}=\operatorname{circshift}(A\{i,:\}$, | $[0,-(i-1)]) ;$ |
| $B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ;$ | |
| end | |

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{33}	A_{31}	A_{32}	\quad	B_{11}	B_{22}	B_{23}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{33}				
B_{31}	B_{12}	B_{13}				

$\mathrm{i}=3$

| for $i=2: m$ | |
| ---: | :--- | ---: |
| $A\{i,:\}=\operatorname{circshift}(A\{i,:\}$, | $[0,-(i-1)]) ;$ |
| $B(:, i\}=\operatorname{circshift}(B\{:, i\},[-(i-1), 0]) ;$ | |
| end | |

A_{11}	A_{12}	A_{13}				
A_{22}	A_{23}	A_{21}				
A_{33}	A_{31}	A_{32}	\quad	B_{11}	B_{22}	B_{33}
:---	:---	:---	:---			
B_{21}	B_{32}	B_{13}				
B_{31}	B_{12}	B_{23}				

A

```
for k=1:m
    C = C + A * B;
    A = circshift(A, [0, -1]);
    B = circshift(B, [-1, 0]);
end
```


Λ
$k=1$

for $k=1: m$	Iferation
$C=C+A * B ;$	
$A=\operatorname{circshift}(A,[0,-1]) ;$	
B	$\operatorname{circshift}(B,[-1,0]) ;$

1

$$
k=1
$$

$$
\begin{aligned}
& \text { for } k=1: m \\
& C=C+A * B ; \\
& A=\operatorname{circshift}(A,[0,-1]) \text {; } \\
& B=\operatorname{circshiftion} \\
& \text { B } \\
& \text { end }
\end{aligned}
$$

\triangle

$$
k=1
$$

```
for k=1:m
C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);
end
```


$k=1$

$$
\begin{aligned}
& \text { for } \mathrm{k}=1: \mathrm{m} \text { Iteration } \\
& \mathrm{C}=\mathrm{C}+\mathrm{A} * \mathrm{~B} ; \\
& \mathrm{A}=\operatorname{circshift}(\mathrm{A},[0,-1]) ; \\
& \mathrm{B}=\operatorname{circshift}(\mathrm{B},[-1,0]) \text {; } \\
& \text { end }
\end{aligned}
$$

$k=1$

$$
\begin{array}{ll}
\text { for } k=1: m & \text { Iferation } \\
C=C+A * B ; \\
A & =\operatorname{circshift}(A,[0,-1]) ; \\
B & =\operatorname{circshift}(B,[-1,0]) ; \\
\text { end }
\end{array}
$$

\triangle
for $\mathrm{k}=1: \mathrm{m} \quad$ lieration
$C=C+A * B$
$\mathrm{A}=\operatorname{circshift}(\mathrm{A},[0,-1])$;
$B=\operatorname{circshift}(B,[-1,0])$;
end

N

```
k=2
for k=1:m
C}=C+A*B
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);
end
```

Λ
for $\mathrm{k}=1: \mathrm{m} \quad$ lieration
$C=C+A * B$
$\mathrm{A}=\operatorname{circshift}(\mathrm{A},[0,-1])$;
$B=\operatorname{circshift}(B,[-1,0])$;
end

N

OVERVEW :

NASA ADVANCED SUPERCOMPUTING BENCHMARK

Nprocs	EP (CLASS C)		FT (CLASS B)		CG (CLASS C)		MG (CLASS B)		LU (CLASS B)	
	$\begin{gathered} \hline \text { Fortran+ } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \text { Fortran }+ \\ \text { MPI } \end{gathered}$	$\begin{gathered} \hline \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \hline \text { Fortran + } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \hline \text { Fortran + } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{aligned} & \hline \text { Fortran + } \\ & \text { MPI } \end{aligned}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$
1	901.6	3556.9	136.8	657.4	3606.9	3812.0	26.9	828.0	15.7	245.1
4	273.1	888.8	109.1	274.0	362.0	1750.9	17.0	273.8	6.3	60.5
8	136.3	447.0	65.5	159.3	123.4	823.6	9.6	151.3	2.9	29.9
16	68.6	224.8	37.2	87.2	89.5	375.2	4.8	87.0	1.2	16.0
32	34.7	112.0	20.7	42.9	48.4	250.3	3.3	54.9	1.1	9.8
64	17.1	56.7	10.4	24.0	44.5	148.0	1.6	50.4	1.3	7.1
128	8.5	29.1	5.9	15.6	30.8	123.0	1.4	38.5	1.6	N/A

NASA ADVANCED SUPERCOMPUTING BENCHMARK

Nprocs	EP (CLASS C)		FT (CLASS B)		CG (CLASS C)		MG (CLASS B)		LU (CLASS B)	
	$\begin{gathered} \hline \text { Fortran+ } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \text { Fortran }+ \\ \text { MPI } \end{gathered}$	$\begin{gathered} \hline \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \hline \text { Fortran + } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{gathered} \hline \text { Fortran + } \\ \text { MPI } \end{gathered}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$	$\begin{aligned} & \hline \text { Fortran + } \\ & \text { MPI } \end{aligned}$	$\begin{gathered} \text { Matlab + } \\ \text { HTA } \end{gathered}$
1	901.6	3556.9	136.8	657.4	3606.9	3812.0	26.9	828.0	15.7	245.1
4	273.1	888.8	109.1	274.0	362.0	1750.9	17.0	273.8	6.3	60.5
8	136.3	447.0	65.5	159.3	123.4	823.6	9.6	151.3	2.9	29.9
16	68.6	224.8	37.2	87.2	89.5	375.2	4.8	87.0	1.2	16.0
32	34.7	112.0	20.7	42.9	48.4	250.3	3.3	54.9	1.1	9.8
64	17.1	56.7	10.4	24.0	44.5	148.0	1.6	50.4	1.3	7.1
128	8.5	29.1	5.9	15.6	30.8	123.0	1.4	38.5	1.6	N/A

speedup factor

128 3.2 GHz Intel Xeons, Gigabit Ethernet

speedup factor
128 conjugate
gradient
sequential speed $95 \% 100 \%$

Matlab+HTA
Fortran+MPI

128 3.2 GHz Intel Xeons, Gigabit Ethernet

- Matlab+HTA O Fortran+MPI

speedup factor

128 3.2 GHz Intel Xeons, Gigabit Ethernet
conjugate
gradient

- Matlab+HTA O Fortran+MPI

128

- Matlab+HTA
-. Fortran+MPI
sequential speed

 ma

PERFORMANCE OF C++ HTA's

MMM
Intel Pentium 4, 3.0 GHz, 8KB L1 cache

MFLOPS	Naive 3 loops \downarrow HTA naive Tiled 6 loops
0 HTA+ATLAS \star ATLAS	

122

TALK :

FURTHER INFORMATION
http://polaris.cs.uiuc.edu/hta/

THANKS.
 FOR YOUR ATTENTION

PUT YOUR QUESTIONS

