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Today 

� Course organization 

� Automatic performance tuning 

Course 

� Number: 252-2600 

� 2 credits 

� Course website:  
http://people.inf.ethz.ch/markusp/teaching/252-2600-ETH-fall11/course.html  

Course Goals 

� Introduction to research in software engineering 

� Learn how to read and understand research papers 

� Learn how to give a good technical presentation to peers 

 

� General topic this semester: Automatic Performance Tuning 



How It Works 

� Every students gets a research paper, main advisor, and date assigned 
within the next week 

 

� Understand the paper 

� Create a presentation 

� Have a meeting with main advisor (TA or me) 

� Present at your assigned date 

Understand the Paper 

� Study it carefully 

� Obtain and study relevant background material, e.g.,  
� Read papers that are cited 

� Look up and understand technical terms and concepts used 

� If needed, meet with TA or instructor for help 

Create a Presentation 

� Try to follow the guidelines presented in the first lectures 

� Should include: 
� Clear motivation for the work 

� Clear explanation what the paper does 

� Understandable (by your fellow students) presentation of content and 
results 

� Brief critical discussion in the end of the contribution: strong and weak 
parts including limitations 

� Present the crucial content and not everything 

� Strive for high visual quality 

� Acknowledge any external material (graphics, anything included by 
copy-paste from other sources) on the same slide 

Meeting With Main Advisor 

� Ask some final questions 

� Strongly recommended: bring draft of presentation for feedback 



Present at Your Assigned Date 

� 30 minutes presentation + 15 minutes for questions 

� Presentation time is strictly enforced (as in the real world) 

Grading 

� Quality of presentation and question handling 
� How well you understood the paper 

� How understandable you presented it 

� How effectively your slides communicated (includes visual quality) 

� I understand that the papers have varying difficulty and will take that 
into account 

� Presence and participation 
� Presence will be recorded 

� If you miss many classes you fail (“many” starts very early for me) 

� Conflicts (military duties etc.): questionnaire 

Today 

� Course organization 

� Automatic performance tuning 
� Problem and motivation 

� A glimpse of some research efforts 

Audio/image/video processing 

Scientific Computing 

Physics/biology simulations 

Consumer Computing 

Computing 
� Unlimited need for performance 

� Large set of applications, but … 

� Relatively small set of critical 
components (100s to 1000s) 
� Matrix multiplication 
� Discrete Fourier transform (DFT) 
� Viterbi decoder 
� Shortest path computation 
� Stencils 
� Solving linear system 
� …. 

Embedded Computing 

Signal processing, communication, control 



Classes of Performance-Critical Functions 

� Transforms 

� Filters/correlation/convolution/stencils/interpolators 

� Dense linear algebra functions 

� Sparse linear algebra functions 

� Coder/decoders 

� … many others 

 

How Hard Is It to Get Fast Code? 

Problem “compute Fourier transform” 

Algorithm theory 

Optimal algorithm 

Software developer 

Compiler 

Source code 

Fast executable 

“fast Fourier transform” 
O(nlog(n)) or 4nlog(n) + 3n 

e.g., a C function 

How well does this work? 

The Problem: Example 1 
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The Problem: Example 1 
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Fastest code (1 MB) 

� Vendor compiler, best flags 
� Roughly same operations count 

12x 

)

35x 

The Problem: Example 2 

� Vendor compiler, best flags 

� Exact same operations count (2n3)  

� What is going on? 
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160x 

Triple loop (< 1KB) 

Fastest code (100 KB) 

Evolution of Processors (Intel) Evolution of Processors (Intel) 

Era of 
parallelism 



And There Will Be Variety …  

Source: IEEE SP Magazine, Vol. 26, November 2009 

Core i7 

Nvidia G200 

TI TNETV3020 Tilera Tile64 

Arm Cortex A9 
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Multiple threads: 3x 

Vector instructions: 3x 

Memory hierarchy: 5x 

� Compiler doesn’t do the job 
� Doing by hand: nightmare 
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Memory hierarchy: 20x 
Vector instructions: 4x 

Multiple threads: 4x 

� Compiler doesn’t do the job 
� Doing by hand: nightmare 

Summary and Facts I 
� Implementations with same operations count can have vastly different 

performance (up to 100x and more) 
� Code style 

� A cache miss can be 100x more expensive than an operation 

� Vector instructions  

� Multiple cores = processors on one die 

� Minimizing operations count ≠ maximizing performance 

� End of free speed-up for legacy code 
� Future performance gains through increasing parallelism 



Summary and Facts II 
� It is very difficult to write the fastest code 

� Tuning for memory hierarchy 

� Vector instructions 

� Efficient parallelization (multiple threads) 

� Requires expert knowledge in algorithms, coding, and architecture 

� Fast code can be large 
� Can violate “good” software engineering practices 

� Compilers often can’t do the job 
� Code style 

� Often intricate changes in the algorithm required 

� Parallelization/vectorization still unsolved 

� Highest performance is in general non-portable 

 

 

Performance/Productivity 
Challenge 

Current Solution 

� Legions of programmers implement and optimize the same functionality 
for every platform and whenever a new platform comes out 

Better Solution: Autotuning 
� Automate (parts of) the implementation or optimization 

 

 

� Relatively recent research area (since late nineties) 

� Techniques used: 
� Program generation 

� Empirical search over alternatives for the fastest 

� Machine learning 

� Performance models 

� Adaptive libraries 

� Domain-specific languages 

� Rewriting systems 



PhiPac/ATLAS: MMM Generator 
Whaley, Bilmes, Demmel, Dongarra, …  

Blocking improves locality 

a b 
* 

c 
= 

c = (double *) calloc(sizeof(double), n*n); 
 
/* Multiply n x n matrices a and b  */ 
void mmm(double *a, double *b, double *c, int n) { 
    int i, j, k; 
    for (i = 0; i < n; i+=B) 
 for (j = 0; j < n; j+=B) 
             for (k = 0; k < n; k+=B) 
   /* B x B mini matrix multiplications */ 
                  for (i1 = i; i1 < i+B; i++) 
                      for (j1 = j; j1 < j+B; j++) 
                          for (k1 = k; k1 < k+B; k++) 
                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1]; 
} 

PhiPac/ATLAS: MMM Generator 

� Techniques: 
� Program generation (here: template-based) 

� Feedback-driven search over a set of parameters 
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Model-Based ATLAS (Yotov et al.) 

Detect 
Hardware 

Parameters 
Model NR 

MulAdd
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L1I$Size ATLAS MMM 
Code Generator xFetch 

MulAdd 
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Source 
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� Techniques: 
� Hardware parameter based model 

OSKI: Sparse Matrix-Vector Multiplication 
Vuduc, Im, Yelick, Demmel 

� Blocking for registers: 
� Improves locality (reuse of input vector) 

� But creates overhead (zeros in block) 

* = 

* = 



OSKI: Sparse Matrix-Vector Multiplication 

Gain by blocking (dense MVM) Overhead by blocking 

* = 

16/9 = 1.77 

1.4 1.4/1.77 = 0.79 (no gain) 

� Techniques: 
� Measurement-based model 
� Data structure adaptation 

FFTW: Discrete Fourier Transform 
Frigo, Johnson 

void dft(int n, cpx *y, cpx *x) { 
    if (use_dft_base_case(n)) 
        dft_bc(n, y, x); 
    else { 
        int k = choose_dft_radix(n); 
        for (int i=0; i < k; ++i) 
            dft_strided(m, k, t + m*i, x + m*i); 
        for (int i=0; i < m; ++i) 
            dft_scaled(k, m, precomp_d[i], y + i, t + i); 
    } 
} 

Choices used for 
adaptation 

Vectorization, threading, etc. add more choices 

FFTW: Discrete Fourier Transform 
Installation 
 configure/make 

 
 
Usage 
 d = dft(n) 
 d(x,y) 

Twiddles 
Search for fastest  
computation strategy 

� Techniques: 
� Adaptive library 
� Dynamic programming search 
� Not explained: Program generator for basic blocks 

n = 1024 

16 64 

8 8 

radix 16 

radix 8 base case 

base case base case 

Spiral: Linear Transforms & More 
Franchetti, Voronenko, Püschel, Xiong, Singer, Moura, Johnson, Padua, … 

Algorithm knowledge Platform description 

Spiral 

Optimized implementation 
(regenerated for every new platform) 

_mm_set1_epi8(x) = … 
_mm_xor_si128(x,y) = … 
_mm_avg_epu8(x,y) = … 
_mm_cmpeq_epi8(x,y) = … 
_mm_unpacklo_epi8(x,y) = … 
… 



Spiral: Linear Transforms & More 

Algorithm knowledge Platform description 

Spiral 

Optimized implementation 
(regenerated for every new platform) 

Program Generation in Spiral (Sketched) 
Transform 
user specified 

Optimized implementation

Fast algorithm 
in SPL 
many choices 

∑-SPL 

parallelization 
vectorization 

loop  
optimizations 

constant folding 
scheduling 
…… 

Optimization at all 
abstraction levels 

Algorithm rules 

� Techniques: 
� Domain-specific language (declarative, mathematical, point-free) 
� Rewriting for optimization 
� Search techniques 
� … 

This Seminar 

� A collection of papers in the domain of autotuning 

� Somewhat interdisciplinary 

� More detailed problem motivation: read first 7 pages of this 
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/paper_100.pdf  

 

� For a more complete introduction to performance optimization,  
take the course: How to write fast numerical code 


