Software Engineering Seminar

Fall 2011
Lecture 1

Instructor: Markus Pischel
TA: Georg Ofenbeck

ETH

Eidgendssische Technisc he Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Today

m Course organization

m Automatic performance tuning

Course

m Number: 252-2600
m 2 credits

m Course website:
http://people.inf.ethz.ch/markusp/teaching/252-2600-ETH-fall11/course.html

Course Goals

m Introduction to research in software engineering

m Learn how to read and understand research papers

Learn how to give a good technical presentation to peers

m General topic this semester: Automatic Performance Tuning

How It Works

m Every students gets a research paper, main advisor, and date assigned
within the next week

= Understand the paper
m Create a presentation
= Have a meeting with main advisor (TA or me)

m Present at your assigned date

Understand the Paper

m Study it carefully

m Obtain and study relevant background material, e.g.,
= Read papers that are cited

" Look up and understand technical terms and concepts used

m If needed, meet with TA or instructor for help

Create a Presentation

m Try to follow the guidelines presented in the first lectures
m Should include:

= Clear motivation for the work

= Clear explanation what the paper does

= Understandable (by your fellow students) presentation of content and
results

= Brief critical discussion in the end of the contribution: strong and weak
parts including limitations

m Present the crucial content and not everything
m Strive for high visual quality

m Acknowledge any external material (graphics, anything included by
copy-paste from other sources) on the same slide

Meeting With Main Advisor

m Ask some final questions

m Strongly recommended: bring draft of presentation for feedback

Present at Your Assigned Date

= 30 minutes presentation + 15 minutes for questions

m Presentation time is strictly enforced (as in the real world)

Grading

= Quality of presentation and question handling
= How well you understood the paper

" How understandable you presented it
= How effectively your slides communicated (includes visual quality)

m |l understand that the papers have varying difficulty and will take that
into account

m Presence and participation
= Presence will be recorded

= |f you miss many classes you fail (“many” starts very early for me)

= Conflicts (military duties etc.): questionnaire

Today

= Automatic performance tuning
® Problem and motivation

= A glimpse of some research efforts

Scientific Computing

- -

-

Computing

’

m Unlimited need for performance

%-

Physics/biology simulations

m Large set of applications, but ...

Consumer Computing i .
m Relatively small set of critical

components (100s to 1000s)
= Matrix multiplication
= Discrete Fourier transform (DFT)
= Viterbi decoder
= Shortest path computation
= Stencils
= Solving linear system

Signal processing, communication, control

Classes of Performance-Critical Functions

= Transforms

m Filters/correlation/convolution/stencils/interpolators
m Dense linear algebra functions

m Sparse linear algebra functions

m Coder/decoders

m .. many others

How Hard Is It to Get Fast Code?

Problem

v

‘ Algorithm theory ‘

Y

Optimal algorithm

!

Software developer

|

“compute Fourier transform”

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

Source code e.g., a C function
‘ Compiler ‘
Fast executable How well does this work?

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
2

1
Straightforward
“good” C code (1 KB)

0 r T T T T T T T T T T T T T T T 1

16 64 256 1k 4k 16k 64k 256k M

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
40

35
30
25
20
15

10

Straightforward

“good” C code (1 KB)

0 —r—r—r————r—r—r—Tr—r—r—r—r——
16 64 256 1k 4k 16k 64k 256k M

5

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
40

35

30
Fastest code (1 MB)
25
20
15

10

Straightforward
“good” C code (1 KB)

16 64 256 1k 4k 16k 64k 256k M

m Vendor compiler, best flags
m Roughly same operations count

The Problem: Example 2

Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
40 —
. Fastest code (100 KB)
30
25
20
15
10
5
Triple loop (< 1KB)
0 ; 1,600 2,(;00 3,600 4,(‘)00 5,600 6,600 7,600 8,600 9,600

matrix size
m Vendor compiler, best flags

m Exact same operations count (2n3)

m What is going on?

Evolution of Processors (Intel)

Floating point peak performance [Gflop/s]
CPU frequency [GHz]

100 3

10

Core i7
Pantiion 4 Core 2 Duo

Pentium 11

Pentium 11 free speedup

0.1

~@— single precision
——@— double precision
—&— CPU frequency

1993 1995 1997

1999 2001 2003 2005 2007 2009

Evolution of Processors (Intel)

R4
Floating point peak performance [Gflop/s] ."'.
CPU frequency [GHz] ..°°.
100 T
Era of
work required © parallelism

10

Core i7
Penfi 4 Core 2 Duo

Pentium 11

Pentium 11 free speedup

0.1

~@— single precision
——@— double precision
—&— CPU frequency

1993 1995 1997

1999 2001 2003 2005 2007 2009

And There Will Be Variety ...

Arm Cortex A9 Nvidia G200

b bt

Corei7

e TITNETV3020 Tilera Tile64

Source: IEEE SP Magazine, Vol. 26, November 2009

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
40

35

30

25
Multiple threads: 3x

20

15

10

Vector instructions: 3x

St o o, o o o
Memory hierarchy: 5x ¢ T ¢ ¢+

0 T T T T T T T T S E— ——]
16 64 256 1k 4k 16k 64k 256k M

m Compiler doesn’t do the job
m Doing by hand: nightmare

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s
50

45
40 -
35
30
25
20
15

Multiple threads: 4x

10

5 ,r Vector instructions: 4x

o "; ‘ N Memory h/erarchy{ 20x N
0

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

m Compiler doesn’t do the job
m Doing by hand: nightmare

Summary and Facts |

= Implementations with same operations count can have vastly different
performance (up to 100x and more)
= Code style

= A cache miss can be 100x more expensive than an operation
= Vector instructions

= Multiple cores = processors on one die

= Minimizing operations count # maximizing performance

m End of free speed-up for legacy code
® Future performance gains through increasing parallelism

Summary and Facts Il

It is very difficult to write the fastest code
® Tuning for memory hierarchy

= Vector instructions

= Efficient parallelization (multiple threads) . .
= Requires expert knowledge in algorithms, coding, and architecture Pe rfo r m a n Ce/ P rO d u Ct I Vlty

m Fast code can be large

® Can violate “good” software engineering practices c h a I I e nge

m Compilers often can’t do the job
= Code style

= Often intricate changes in the algorithm required

= Parallelization/vectorization still unsolved

m Highest performance is in general non-portable

Current Solution Better Solution: Autotuning
o B o I B o B O o o B o N o v, B o B B v o B o B o R o) m Automate (parts of) the implementation or optimization
£4) A A A4 A4) Ad) AD AD) A4 Ad) A AD) A4) A AD) AD) A4 AD -
o o I o B I o e B o M e B B o e I o B e D e D o B e D o M ““““““

“ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ m Relatively recent research area (since late nineties)
A A m Techniques used:
A4 A4 A4 Ad) Ad) A4 Ad) A A AN AN A Ad) A AD) A AD) AD = Program generation
aaaaaaaaaaaaaaaaaa = Empirical search over alternatives for the fastest
Ny ® Machine learning
£4) A4 A4 A4 A4) A4) A6 A A A4) A4) A6 AD) A4) A4) A4 AD A = Performance models

= Adaptive libraries

m Legions of programmers implement and optimize the same functionality = Domain-specific languages

for every platform and whenever a new platform comes out = Rewriting systems

PhiPac/ATLAS: MMM Generator PhiPac/ATLAS: MMM Generator

Whaley, Bilmes, Demmel, Dongarra, ...

c a b Miopls Execute
- * Measure
[| [[[]]]
Blocking i localit D e MUNUKD
tect ini
ocking improves locality jDeteet R atas USROS Arias muw UL
P MulAdd _ Search Engine MulAdd Code Generator
L, Latency .
c = (double *) calloc(sizeof (double), n*n); —_—
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B) Te h .
/* B x B mini matrix multiplications */ m lechniques:
Sz (@ = dp 21l € d9Ey A9 = Program generation (here: template-based)
for (31 = j; j1l < j+B; J++)
for (k1 = k; kl < ktB; ki)) = Feedback-driven search over a set of parameters
clil*n+j1] += a[il*n + k1]*b[kl*n + j1];
}
source: Pingali, Yotov, Cornell U.

ATLAS ops A . T
OSKI: Sparse Matrix-Vector Multiplication

Measure

Vuduc, Im, Yelick, Demmel

L1Size NB

Detect MU.NU,KU
etec — L HUA MiniMMM
TS NR ATLAS : xFetch ATLAS MMM Sotrce
MulAdd Search Engine MulAdd Code Generator
Parameters — — > I Lateney o
L, . Latency ~

= *
Model-Based ATLAS (votov et al.) .
\’\'._
L1Size NB
Detect $Si T MUNUKU > ini
Ha:i:l‘;re LﬂNglze Model M;JF’&{::U ALSLLL | S Mslr:m:\:lleM Blocking for registers:
P e T MulAdd T MuAdd " Code Generator u ing gl :
—e— e = |mproves locality (reuse of input vector)

® But creates overhead (zeros in block)

.-'Vg Ng % Ny My o
By B2 Y = <
[B‘l-|+‘j" B, + B, XN{,_BL

m Techniques: * =
= Hardware parameter based model

source: Pingali, Yotov, Cornell U.

OSKI: Sparse Matrix-Vector Multiplication

Gain by blocking (dense MVM) Overhead by blocking

=

16/9 =1.77

14— 1.4/1.77 = 0.79 (no gain)

m Techniques:

" Measurement-based model
= Data structure adaptation

FFTW: Discrete Fourier Transform

Frigo, Johnson

void dft(int n, cpx *y, cpx *x) {

 E—— if (use_dft_base_case(n)) Choices used for
dft_bc(n, y, Xx); .
else { adaptation

int k = choose_dft_radix(n);
for (int i=0; i < k; ++i)
dft_strided(m, k, t + m*i, x + m*i);
for (int i=0; i < m; ++i)
dft_scaled(k, m, precomp_d[i], y + i, t + i);

[ARRRRARRRRAT

Vectorization, threading, etc. add more choices

FFTW: Discrete Fourier Transform

Installation
. n =1024
configure/make .
/\adlx 16
16 64
base case radix 8

Usage Twiddles /\

d = dft(n)<BEELURISEHEN] 8 8

d(x,y) computation strategy base case base case

m Techniques:
= Adaptive library
= Dynamic programming search
= Not explained: Program generator for basic blocks

Spiral: Linear Transforms & More

Franchetti, Voronenko, Plschel, Xiong, Singer, Moura, Johnson, Padua, ...

Algorithm knowledge Platform description

mm_setl_epi8(x) = ...
mm_xor_si128(x,y) = ...

:mm_avg_epuslx,y) =..

LJ
r

mm_unpacklo_epi8(x,y) = ...
Optimized implementation
(regenerated for every new platform)

Spiral: Linear Transforms & More

Algorithm knowledge Platform description
DFTy = Pl g0 (DFTap i (124 @i C20 rDF T2, (/0))) (RDFT, @0) An @l = (LiPeL) (heldn el) (LiPel,,)
fDFTa0(w)| , on ¥DF T, (0 4 u)/K)[\ (|FDFTa(0) smoi,
rDH'I.';..Eu) g {_"‘ HFDHT 2 (0 + u)) [rDH'iifu) ’) " _ : e
RDFT-3, — (Q 3,10 & 12) (i & *DF Lo,)i + 1/2)/k)) (RDFT-3; 4y) L @Ay — by @) Lnjp @An)
smp(pp)
(Pak)—(PaL,)BL
smp(ppu)

Spiral

At

Optimized implementation
(regenerated for every new platform)

Program Generation in Spiral (Sketched)

Optimization at all

Transform J DFTg abstraction levels
user specifie 1Algorithm rules

Fast e:_lgorithm (OF T2 ® 1) T8 (12 ® ((DF T2 ® I2) paralle.liza.tion
insPL T3 (I ® DF T2) L3)) L§ vectorization
many choices

5-SPL S (8,0FT26) % (z (.s'k_,. diag(t) DF T2 (.-,)) loop

optimizations
3 (S diag(tm) OF T2 G 1))

constant folding
Optimized implementation scheduling

m Techniques:
= Domain-specific language (declarative, mathematical, point-free)
= Rewriting for optimization
= Search techniques

This Seminar

m A collection of papers in the domain of autotuning
= Somewhat interdisciplinary

= More detailed problem motivation: read first 7 pages of this
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/paper 100.pdf

m For a more complete introduction to performance optimization,
take the course: How to write fast numerical code

