
Software Engineering Seminar
Fall 2011
Lecture 1

Instructor: Markus Püschel
TA: Georg Ofenbeck

AAAAA

Today

� Course organization

� Automatic performance tuning

Course

� Number: 252-2600

� 2 credits

� Course website:
http://people.inf.ethz.ch/markusp/teaching/252-2600-ETH-fall11/course.html

Course Goals

� Introduction to research in software engineering

� Learn how to read and understand research papers

� Learn how to give a good technical presentation to peers

� General topic this semester: Automatic Performance Tuning

How It Works

� Every students gets a research paper, main advisor, and date assigned
within the next week

� Understand the paper

� Create a presentation

� Have a meeting with main advisor (TA or me)

� Present at your assigned date

Understand the Paper

� Study it carefully

� Obtain and study relevant background material, e.g.,
� Read papers that are cited

� Look up and understand technical terms and concepts used

� If needed, meet with TA or instructor for help

Create a Presentation

� Try to follow the guidelines presented in the first lectures

� Should include:
� Clear motivation for the work

� Clear explanation what the paper does

� Understandable (by your fellow students) presentation of content and
results

� Brief critical discussion in the end of the contribution: strong and weak
parts including limitations

� Present the crucial content and not everything

� Strive for high visual quality

� Acknowledge any external material (graphics, anything included by
copy-paste from other sources) on the same slide

Meeting With Main Advisor

� Ask some final questions

� Strongly recommended: bring draft of presentation for feedback

Present at Your Assigned Date

� 30 minutes presentation + 15 minutes for questions

� Presentation time is strictly enforced (as in the real world)

Grading

� Quality of presentation and question handling
� How well you understood the paper

� How understandable you presented it

� How effectively your slides communicated (includes visual quality)

� I understand that the papers have varying difficulty and will take that
into account

� Presence and participation
� Presence will be recorded

� If you miss many classes you fail (“many” starts very early for me)

� Conflicts (military duties etc.): questionnaire

Today

� Course organization

� Automatic performance tuning
� Problem and motivation

� A glimpse of some research efforts

Audio/image/video processing

Scientific Computing

Physics/biology simulations

Consumer Computing

Computing
� Unlimited need for performance

� Large set of applications, but …

� Relatively small set of critical
components (100s to 1000s)
� Matrix multiplication
� Discrete Fourier transform (DFT)
� Viterbi decoder
� Shortest path computation
� Stencils
� Solving linear system
� ….

Embedded Computing

Signal processing, communication, control

Classes of Performance-Critical Functions

� Transforms

� Filters/correlation/convolution/stencils/interpolators

� Dense linear algebra functions

� Sparse linear algebra functions

� Coder/decoders

� … many others

How Hard Is It to Get Fast Code?

Problem “compute Fourier transform”

Algorithm theory

Optimal algorithm

Software developer

Compiler

Source code

Fast executable

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

The Problem: Example 1

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

� Vendor compiler, best flags
� Roughly same operations count

12x

)

35x

The Problem: Example 2

� Vendor compiler, best flags

� Exact same operations count (2n3)

� What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

160x

Triple loop (< 1KB)

Fastest code (100 KB)

Evolution of Processors (Intel) Evolution of Processors (Intel)

Era of
parallelism

And There Will Be Variety …

Source: IEEE SP Magazine, Vol. 26, November 2009

Core i7

Nvidia G200

TI TNETV3020 Tilera Tile64

Arm Cortex A9

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Multiple threads: 3x

Vector instructions: 3x

Memory hierarchy: 5x

� Compiler doesn’t do the job
� Doing by hand: nightmare

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x
Vector instructions: 4x

Multiple threads: 4x

� Compiler doesn’t do the job
� Doing by hand: nightmare

Summary and Facts I
� Implementations with same operations count can have vastly different

performance (up to 100x and more)
� Code style

� A cache miss can be 100x more expensive than an operation

� Vector instructions

� Multiple cores = processors on one die

� Minimizing operations count ≠ maximizing performance

� End of free speed-up for legacy code
� Future performance gains through increasing parallelism

Summary and Facts II
� It is very difficult to write the fastest code

� Tuning for memory hierarchy

� Vector instructions

� Efficient parallelization (multiple threads)

� Requires expert knowledge in algorithms, coding, and architecture

� Fast code can be large
� Can violate “good” software engineering practices

� Compilers often can’t do the job
� Code style

� Often intricate changes in the algorithm required

� Parallelization/vectorization still unsolved

� Highest performance is in general non-portable

Performance/Productivity
Challenge

Current Solution

� Legions of programmers implement and optimize the same functionality
for every platform and whenever a new platform comes out

Better Solution: Autotuning
� Automate (parts of) the implementation or optimization

� Relatively recent research area (since late nineties)

� Techniques used:
� Program generation

� Empirical search over alternatives for the fastest

� Machine learning

� Performance models

� Adaptive libraries

� Domain-specific languages

� Rewriting systems

PhiPac/ATLAS: MMM Generator
Whaley, Bilmes, Demmel, Dongarra, …

Blocking improves locality

a b
*

c
=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

PhiPac/ATLAS: MMM Generator

� Techniques:
� Program generation (here: template-based)

� Feedback-driven search over a set of parameters

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute
Measure

Mflop/s

source: Pingali, Yotov, Cornell U.

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute
Measure

Mflop/s

source: Pingali, Yotov, Cornell U.

Model-Based ATLAS (Yotov et al.)

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator xFetch

MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

� Techniques:
� Hardware parameter based model

OSKI: Sparse Matrix-Vector Multiplication
Vuduc, Im, Yelick, Demmel

� Blocking for registers:
� Improves locality (reuse of input vector)

� But creates overhead (zeros in block)

* =

* =

OSKI: Sparse Matrix-Vector Multiplication

Gain by blocking (dense MVM) Overhead by blocking

* =

16/9 = 1.77

1.4 1.4/1.77 = 0.79 (no gain)

� Techniques:
� Measurement-based model
� Data structure adaptation

FFTW: Discrete Fourier Transform
Frigo, Johnson

void dft(int n, cpx *y, cpx *x) {
 if (use_dft_base_case(n))
 dft_bc(n, y, x);
 else {
 int k = choose_dft_radix(n);
 for (int i=0; i < k; ++i)
 dft_strided(m, k, t + m*i, x + m*i);
 for (int i=0; i < m; ++i)
 dft_scaled(k, m, precomp_d[i], y + i, t + i);
 }
}

Choices used for
adaptation

Vectorization, threading, etc. add more choices

FFTW: Discrete Fourier Transform
Installation
 configure/make

Usage
 d = dft(n)
 d(x,y)

Twiddles
Search for fastest
computation strategy

� Techniques:
� Adaptive library
� Dynamic programming search
� Not explained: Program generator for basic blocks

n = 1024

16 64

8 8

radix 16

radix 8 base case

base case base case

Spiral: Linear Transforms & More
Franchetti, Voronenko, Püschel, Xiong, Singer, Moura, Johnson, Padua, …

Algorithm knowledge Platform description

Spiral

Optimized implementation
(regenerated for every new platform)

_mm_set1_epi8(x) = …
_mm_xor_si128(x,y) = …
_mm_avg_epu8(x,y) = …
_mm_cmpeq_epi8(x,y) = …
_mm_unpacklo_epi8(x,y) = …
…

Spiral: Linear Transforms & More

Algorithm knowledge Platform description

Spiral

Optimized implementation
(regenerated for every new platform)

Program Generation in Spiral (Sketched)
Transform
user specified

Optimized implementation

Fast algorithm
in SPL
many choices

∑-SPL

parallelization
vectorization

loop
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels

Algorithm rules

� Techniques:
� Domain-specific language (declarative, mathematical, point-free)
� Rewriting for optimization
� Search techniques
� …

This Seminar

� A collection of papers in the domain of autotuning

� Somewhat interdisciplinary

� More detailed problem motivation: read first 7 pages of this
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/paper_100.pdf

� For a more complete introduction to performance optimization,
take the course: How to write fast numerical code

