18-799F Algebraic Signal Processing Theory
 Spring 2007
 Solutions: Midterm

1. (a) True: every Euclidean domain is a principal ideal domain.
(b) True: in an abelian group every element commutes with all others, so any subgroup is automatically normal.
(c) $\left(\mathbb{F}^{n \times n}, \times\right)$, where \mathbb{F} is a field.
(d) $(\mathbb{Z} / n \mathbb{Z})^{\times}=\mathbb{Z} / n \mathbb{Z} \backslash\{0\}$ iff n is prime.
(e) $(\mathbb{Z},+, \times), \mathbb{C}[x], \mathbb{C}[x] /\left(x^{n}-1\right)$.
(f) Such function doesn't exist: since f is injective, $|S|=|\operatorname{im} f|$, so $\operatorname{im} f=S$, i.e. f is surjective.
(g) $12 \mathbb{Z}+9 \mathbb{Z}=\operatorname{gcd}(12,9) \mathbb{Z}=3 \mathbb{Z}$.
(h) $\mathbb{C}=\mathbb{R}+i \mathbb{R}$ is an \mathbb{R}-vector space of dimension 2 .
(i) If $A, B \in \mathbb{C}^{n \times n}$ represent the same linear mapping, then there exists nonsingular matrix $P \in \mathbb{C}^{n \times n}$, such that $A=P B P^{-1}$. (Moreover, A and B have the same determinant, spectrum, i.e. collection of eigenvalues, trace, and characteristic polynomial).
(j) For field A, an A-module is an A-vector space.
2. ϕ is a homomorphism of algebras because for any $s(x)=\sum_{k=0}^{n} s_{k} x^{k}, t(x)=\sum_{j=0}^{m} t_{j} x^{j} \in \mathbb{R}[x]$ and $\alpha, \beta \in \mathbb{R}$:
(i) $\phi(\alpha s(x)+\beta t(x))=\alpha s_{0}+\beta t_{0}=\alpha \phi(s(x))+\beta \phi(t(x))$;
(ii) $\phi(s(x) t(x))=s_{0} t_{0}=\phi(s(x)) \phi(t(x))$.
$\operatorname{ker} \phi=\left\{s(x) \in \mathbb{R}[x] \mid s_{0}=0\right\}=x \mathbb{R}[x]$. Since it is a kernel of a ring homorphism, $\operatorname{ker} \phi$ is an ideal in $\mathbb{R}[x]$.
ψ is not a homomorphism since in general $\psi(s(x) t(x))=s_{0} t_{1}+s_{1} t_{0} \neq s_{1}+t_{1}=\psi(s(x))+\psi(t(x))$; e.g. $\psi(x(x-1))=1 \neq 1+1=\psi(x)+\psi(x-1)$.
3. (a) Let $w_{3}=e^{\frac{i 2 \pi}{3}}$. Then

$$
\mathrm{DFT}_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & w_{3} & w_{3}^{2} \\
1 & w_{3}^{2} & w_{3}
\end{array}\right) .
$$

(b) Let

$$
\begin{array}{rlll}
\phi: & \mathbb{C}[x] /\left(x^{3}-1\right) & \rightarrow \mathbb{C}[x] /(x-1) \oplus \mathbb{C}[x] /\left(x^{2}+x+1\right) \\
\psi: & \mathbb{C}[x] /\left(x^{2}+x+1\right) & \rightarrow \mathbb{C}[x] /\left(x-w_{3}\right) \oplus \mathbb{C}[x] /\left(x-w_{3}^{2}\right)
\end{array}
$$

Since the basis of $\mathbb{C}[x] /(x-1) \oplus \mathbb{C}[x] /\left(x^{2}+x+1\right)$ is $\{(1,0),(0,1),(0, x)\}$,

$$
\begin{aligned}
\phi(1) & =(1,1) \\
\phi(x) & =(1, x) \\
\phi\left(x^{2}\right) & =(1,-1-x)
\end{aligned}
$$

and the corresponding matrix is

$$
B_{1}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
$$

The basis of $\mathbb{C}[x] /\left(x-w_{3}\right) \oplus \mathbb{C}[x] /\left(x-w_{3}^{2}\right)$ is $\{(1,0),(0,1)\}$. Then

$$
\begin{aligned}
& \psi(1)=(1,1) \\
& \psi(x)=\left(w_{3}, w_{3}^{2}\right)
\end{aligned}
$$

and the corresponding matrix is

$$
B_{2}=I_{1} \oplus\left(\begin{array}{cc}
1 & w_{3} \\
1 & w_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & w_{3} \\
0 & 1 & w_{3}^{2}
\end{array}\right)
$$

Since the roots are in the same order as in the CRT case, we don't need to introduce any permutation matrix. Hence, $\mathrm{DFT}_{3}=B_{2} B_{1}$, and

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & w_{3} & w_{3}^{2} \\
1 & w_{3}^{2} & w_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & w_{3} \\
0 & 1 & w_{3}^{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) .
$$

(c) (i) Computing $y=\mathrm{DFT}_{3} z$ requires 4 (non-trivial) complex multiplications and 6 additions.
(ii) Computing $y=B_{2} B_{1} z=B_{2}\left(B_{1} z\right)$ requires 4 additions for B_{1}, and 2 multiplications and 2 additions for $B_{2}-$ a total of 6 additions and 2 multiplications.
4. (a)

$$
\phi(x)=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & 2 \\
1 & \ddots & & \vdots & 0 \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

The visualization is

(b) Let I_{k} denote an identity matrix of size $k \times k$. Since $\phi\left(x^{k}\right)$ is a block matrix of the structure

$$
\phi\left(x^{k}\right)=\left(\begin{array}{cc}
0 & 2 I_{k} \\
I_{n-k} & 0
\end{array}\right)
$$

then for $h=\sum_{k=0}^{n-1} h_{k} x^{k} \in \mathcal{A}$:

$$
\phi(h)=\left(\begin{array}{ccccc}
h_{0} & 2 h_{n-1} & \cdots & 2 h_{2} & 2 h_{1} \\
h_{1} & \ddots & & \vdots & \vdots \\
h_{2} & \ddots & \ddots & 2 h_{n-1} & \vdots \\
\vdots & \ddots & \ddots & h_{0} & 2 h_{n-1} \\
h_{n-1} & \cdots & h_{2} & h_{1} & h_{0}
\end{array}\right)
$$

(c) Let $\alpha=\left\{\alpha_{k}=\sqrt[n]{2} e^{\frac{k i 2 \pi}{n}}=\sqrt[n]{2} w_{n}^{k}\right\}_{0 \leq k<n}$ be the set of roots of polynomial $x^{n}-2$. The spectral decomposition of \mathcal{M} is

$$
\begin{aligned}
\mathbb{C}[x] /\left(x^{n}-2\right) & \rightarrow \bigoplus_{k=0}^{n-1} \mathbb{C}[x] /\left(x-\alpha_{k}\right) \\
s(x) & \mapsto\left(s\left(\alpha_{0}\right), \ldots, s\left(\alpha_{n-1}\right)\right)
\end{aligned}
$$

(d) $\mathcal{F}=\mathcal{P}_{b, \alpha}=\left[\left(\sqrt[n]{2} w_{n}^{k}\right)^{l}\right]_{0 \leq k, l<n}$.
(e) Since all roots of $p(x)=x^{n}-2$ are distinct, $\mathcal{F}=\mathcal{P}_{b, \alpha}$ completely diagonalizes $\phi(h)$.
(f) Since $\mathcal{F} \phi(h) \mathcal{F}^{-1}=\operatorname{diag}\left(h\left(\alpha_{0}\right), \ldots, h\left(\alpha_{n-1}\right)\right)$, so the eigenvalues of $\phi(h)$ are the same as those of the matrix on the right side of the equation, i.e. $h\left(\alpha_{0}\right), \ldots, h\left(\alpha_{n-1}\right)$. On the other hand, the collection $\left(h\left(\alpha_{0}\right), \ldots, h\left(\alpha_{n-1}\right)\right)$ is exactly the frequency response of h.
(g) $\mathcal{F}=\operatorname{DFT}_{n} \cdot \operatorname{diag}\left(\sqrt[n]{2^{l}}, 0 \leq l<n\right)$).

