18-799F Algebraic Signal Processing Theory Spring 2007 Solutions: Midterm

- 1. (a) True: every Euclidean domain is a principal ideal domain.
 - (b) True: in an abelian group every element commutes with all others, so any subgroup is automatically normal.
 - (c) $(\mathbb{F}^{n \times n}, \times)$, where \mathbb{F} is a field.
 - (d) $(\mathbb{Z}/n\mathbb{Z})^{\times} = \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$ iff *n* is prime.
 - (e) $(\mathbb{Z}, +, \times), \mathbb{C}[x], \mathbb{C}[x]/(x^n 1).$
 - (f) Such function doesn't exist: since f is injective, |S| = |imf|, so imf = S, i.e. f is surjective.
 - (g) $12\mathbb{Z} + 9\mathbb{Z} = \gcd(12, 9)\mathbb{Z} = 3\mathbb{Z}.$
 - (h) $\mathbb{C} = \mathbb{R} + i\mathbb{R}$ is an \mathbb{R} -vector space of dimension 2.
 - (i) If $A, B \in \mathbb{C}^{n \times n}$ represent the same linear mapping, then there exists nonsingular matrix $P \in \mathbb{C}^{n \times n}$, such that $A = PBP^{-1}$. (Moreover, A and B have the same determinant, spectrum, i.e. collection of eigenvalues, trace, and characteristic polynomial).
 - (j) For field A, an A-module is an A-vector space.
- 2. ϕ is a homomorphism of algebras because for any $s(x) = \sum_{k=0}^{n} s_k x^k$, $t(x) = \sum_{j=0}^{m} t_j x^j \in \mathbb{R}[x]$ and $\alpha, \beta \in \mathbb{R}$:
 - (i) $\phi(\alpha s(x) + \beta t(x)) = \alpha s_0 + \beta t_0 = \alpha \phi(s(x)) + \beta \phi(t(x));$
 - (ii) $\phi(s(x)t(x)) = s_0 t_0 = \phi(s(x))\phi(t(x)).$

 $\ker \phi = \{s(x) \in \mathbb{R}[x] \mid s_0 = 0\} = x\mathbb{R}[x]$. Since it is a kernel of a ring homorphism, $\ker \phi$ is an ideal in $\mathbb{R}[x]$.

 ψ is not a homomorphism since in general $\psi(s(x)t(x)) = s_0t_1 + s_1t_0 \neq s_1 + t_1 = \psi(s(x)) + \psi(t(x))$; e.g. $\psi(x(x-1)) = 1 \neq 1 + 1 = \psi(x) + \psi(x-1)$.

3. (a) Let $w_3 = e^{\frac{i2\pi}{3}}$. Then

$$DFT_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & w_3 & w_3^2 \\ 1 & w_3^2 & w_3 \end{pmatrix}.$$

(b) Let

$$\begin{aligned} \phi : & \mathbb{C}[x]/(x^3-1) & \to & \mathbb{C}[x]/(x-1) \oplus \mathbb{C}[x]/(x^2+x+1) \\ \psi : & \mathbb{C}[x]/(x^2+x+1) & \to & \mathbb{C}[x]/(x-w_3) \oplus \mathbb{C}[x]/(x-w_3^2) \end{aligned}$$

Since the basis of $\mathbb{C}[x]/(x-1) \oplus \mathbb{C}[x]/(x^2+x+1)$ is $\{(1,0), (0,1), (0,x)\},\$

$$\begin{array}{rcl} \phi(1) & = & (1,1) \\ \phi(x) & = & (1,x) \\ \phi(x^2) & = & (1,-1-x) \end{array}$$

and the corresponding matrix is

$$B_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

The basis of $\mathbb{C}[x]/(x-w_3) \oplus \mathbb{C}[x]/(x-w_3^2)$ is $\{(1,0), (0,1)\}$. Then

$$\psi(1) = (1,1)$$

 $\psi(x) = (w_3, w_3^2)$

and the corresponding matrix is

$$B_2 = I_1 \oplus \begin{pmatrix} 1 & w_3 \\ 1 & w_3^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & w_3 \\ 0 & 1 & w_3^2 \end{pmatrix}$$

Since the roots are in the same order as in the CRT case, we don't need to introduce any permutation matrix. Hence, $DFT_3 = B_2B_1$, and

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & w_3 & w_3^2 \\ 1 & w_3^2 & w_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & w_3 \\ 0 & 1 & w_3^2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

- (c) (i) Computing $y = DFT_3 z$ requires 4 (non-trivial) complex multiplications and 6 additions.
 - (ii) Computing $y = B_2 B_1 z = B_2 (B_1 z)$ requires 4 additions for B_1 , and 2 multiplications and 2 additions for B_2 a total of 6 additions and 2 multiplications.

$$\phi(x) = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 2 \\ 1 & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

The visualization is

4. (a)

(b) Let
$$I_k$$
 denote an identity matrix of size $k \times k$. Since $\phi(x^k)$ is a block matrix of the structure

$$\phi(x^k) = \begin{pmatrix} 0 & 2I_k \\ I_{n-k} & 0 \end{pmatrix},$$

then for $h = \sum_{k=0}^{n-1} h_k x^k \in \mathcal{A}$:

$$\phi(h) = \begin{pmatrix} h_0 & 2h_{n-1} & \cdots & 2h_2 & 2h_1 \\ h_1 & \ddots & & \vdots & \vdots \\ h_2 & \ddots & \ddots & 2h_{n-1} & \vdots \\ \vdots & \ddots & \ddots & h_0 & 2h_{n-1} \\ h_{n-1} & \cdots & h_2 & h_1 & h_0 \end{pmatrix}$$

(c) Let $\alpha = \{\alpha_k = \sqrt[n]{2}e^{\frac{ki2\pi}{n}} = \sqrt[n]{2}w_n^k\}_{0 \le k < n}$ be the set of roots of polynomial $x^n - 2$. The spectral decomposition of \mathcal{M} is

$$\mathbb{C}[x]/(x^n - 2) \quad \to \quad \bigoplus_{k=0}^{n-1} \mathbb{C}[x]/(x - \alpha_k) \\ s(x) \quad \mapsto \quad (s(\alpha_0), \dots, s(\alpha_{n-1}))$$

- (d) $\mathcal{F} = \mathcal{P}_{b,\alpha} = [(\sqrt[n]{2}w_n^k)^l]_{0 \le k, l < n}.$
- (e) Since all roots of $p(x) = x^n 2$ are distinct, $\mathcal{F} = \mathcal{P}_{b,\alpha}$ completely diagonalizes $\phi(h)$.
- (f) Since $\mathcal{F}\phi(h)\mathcal{F}^{-1} = \text{diag}(h(\alpha_0), \ldots, h(\alpha_{n-1}))$, so the eigenvalues of $\phi(h)$ are the same as those of the matrix on the right side of the equation, i.e. $h(\alpha_0), \ldots, h(\alpha_{n-1})$. On the other hand, the collection $(h(\alpha_0), \ldots, h(\alpha_{n-1}))$ is exactly the frequency response of h.
- (g) $\mathcal{F} = \text{DFT}_n \cdot \text{diag}(\sqrt[n]{2^l}, 0 \le l < n)).$