18-799F Algebraic Signal Processing Theory

Spring 2007
Solutions: Assignment 6
(a)

$$
\phi(x)=\left(\begin{array}{ccccc}
0 & \frac{1}{2} & 0 & & \\
1 & 0 & \frac{1}{2} & & \\
0 & \frac{1}{2} & \ddots & \ddots & \\
& & \ddots & 0 & \frac{1}{2} \\
& & & \frac{1}{2} & 0
\end{array}\right)
$$

The visualization of the signal model is

Unlike the visualization for DFT, this one is bidirectional, has different weights on its edges, and noncyclic boundary conditions.
(b) In coordinate-free form the Fourier transform is

$$
\begin{aligned}
\Delta: \mathbb{C} / T_{n}(x) & \rightarrow \bigoplus_{i=0}^{n-1}\left(x-\cos \frac{(2 k+1) \pi}{2 n}\right) \\
s & \mapsto\left(s\left(\cos \frac{\pi}{2 n}\right), s\left(\cos \frac{3 \pi}{2 n}\right), \ldots, s\left(\cos \frac{(2 n-1) \pi}{2 n}\right)\right)
\end{aligned}
$$

In coordinate form it is

$$
\mathcal{F}=\mathcal{P}_{b, \alpha}=\left[T_{l}\left(\alpha_{k}\right)\right]_{0 \leq k, l<n}=\left[\cos \frac{(2 k+1) l \pi}{2 n}\right]_{0 \leq k, l<n}
$$

In fact, \mathcal{F} is exactly the matrix for $D C T-3_{n}$, the Discrete Fourier Transform of type 3 .
(c) The frequency response of $h(x) \in \mathcal{A}$ is $\left(h\left(\cos \frac{\pi}{2 n}\right), h\left(\cos \frac{3 \pi}{2 n}\right), \ldots, h\left(\cos \frac{(2 n-1) \pi}{2 n}\right)\right)$.
(d) In this signal model the shift is $q=T_{1}(x)$ and the k-fold shift is $q_{k}=T_{k}(q)=T_{k}(x)$. Using properties $T_{-k}=T_{k}$ and $T_{n+k}=-T_{n-k}$ for $k<n$ and $T_{n}=0$, we can derive corresponding mappings of the basis functions, i.e. shifts, are

$$
\begin{gathered}
\phi\left(T_{0}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\phi\left(T_{1}\right)=\left(\begin{array}{llll}
0 & \frac{1}{2} & 0 & 0 \\
1 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0
\end{array}\right) \\
\phi\left(T_{2}\right)=\left(\begin{array}{llll}
0 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right) \\
\phi\left(T_{3}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
1 & 0 & -\frac{1}{2} & 0
\end{array}\right)
\end{gathered}
$$

Then for any $h=h(x)=\sum_{k=0}^{3} h_{k} T_{k} \in \mathcal{A}$

$$
\phi(h)=\left(\begin{array}{cccc}
h_{0} & \frac{h_{1}}{2} & \frac{h_{2}}{2} & \frac{h_{3}}{2} \\
h_{1} & h_{0}+\frac{h_{2}}{2} & \frac{h_{1}}{2}+\frac{h_{3}}{2} & \frac{h_{2}}{2} \\
h_{2} & \frac{h_{1}}{2}+\frac{h_{3}}{2} & h_{0} & \frac{h_{1}}{2} \frac{-\frac{h_{3}}{2}}{h_{3}} \\
h_{2} & \frac{h_{1}}{2}-\frac{h_{3}}{2} & h_{0}
\end{array}\right)
$$

