18-799F Algebraic Signal Processing Theory

Spring 2007

Solutions: Assignment 3

1. $(26 \ pts)$

- (a) $\mathbb{F}_n[x]$ is a vector space:
 - (i) $(\mathbb{F}_n[x], +)$ is a commutative group;

 - (ii) $\alpha, \beta \in \mathbb{F}: \alpha(\beta q(x)) = \alpha \sum_{i=0}^{n} \beta q_i x^i = \sum_{i=0}^{n} \alpha \beta q_i x^i = (\alpha \beta) q(x) \in \mathbb{F}_n[x];$ (iii) $(\alpha + \beta) q(x) = (\alpha + \beta) \sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} (\alpha + \beta) a_i x^i = \sum_{i=0}^{n} \alpha a_i x^i + \sum_{i=0}^{n} \beta a_i x^i = \alpha q(x) + \beta q(x)$

Basis is $\{1, x, \ldots, x^n\}$; dim $\mathbb{F}_n[x] = n + 1$.

- (b) $\operatorname{GL}_n(\mathbb{R})$ is not an additive group, so it cannot be a vector space.
- (c) Let $a(x), b(x), c(x), d(x), e(x), f(x) \in \mathbb{F}[x]$. Then

 - (i) $\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x)d(x) + b(x)c(x)}{b(x)d(x)} \in \mathbb{F}(x);$ (ii) $\frac{a(x)}{b(x)} + (\frac{c(x)}{d(x)} + \frac{(e(x)}{f(x)}) = \frac{a(x)d(x)f(x) + c(x)b(x)f(x) + d(x)b(x)f(x)}{b(x)d(x)f(x)} = (\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)}) + \frac{(e(x)}{f(x)};$ (iii) Neutral element $0 \in \mathbb{F}(x);$

 - (iv) The inverse of $\frac{a(x)}{b(x)}$ is $\frac{-a(x)}{b(x)} \in \mathbb{F}(x)$. (v) $\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x)d(x)+b(x)c(x)}{b(x)d(x)} = \frac{c(x)}{d(x)} + \frac{a(x)}{b(x)} \in \mathbb{F}(x);$

Thus, $\mathbb{F}(x)$ is a commutative group.

Pick $\alpha, \beta \in \mathbb{F}$. Then

$$\begin{array}{l} - \ \alpha(\beta\frac{a(x)}{b(x)}) = \frac{\alpha\beta a(x)}{b(x)} = (\alpha\beta)\frac{a(x)}{b(x)}; \\ - \ (\alpha+\beta)\frac{a(x)}{b(x)} = \frac{(\alpha+\beta)a(x)}{b(x)} = \frac{\alpha a(x)}{b(x)} + \frac{\beta a(x)}{b(x)} = \alpha\frac{a(x)}{b(x)} + \beta\frac{a(x)}{b(x)}. \end{array}$$

Thus, $\mathbb{F}(x)$ is a vector space.

Since $\mathbb{F}[x] = \langle 1, x, x^2, \ldots \rangle \subset \mathbb{F}(x)$ and dim $F[x] = \infty$, dim $\mathbb{F}(x) = \infty$. However, it is impossible to specify the basis of $\mathbb{F}(x)$.

- (d) Let $z \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$. Then
 - (i) $(\mathbb{C}, +)$ is a commutative group;
 - (ii) $\alpha(\beta z) = (\alpha \beta) z;$
 - (iii) $(\alpha + \beta)z = \alpha z + \beta z$.

Thus, \mathbb{C} is a vector space. Its basis is $\{1, i = \sqrt{-1}\}$ and dim $\mathbb{C} = 2$.

- (e) \mathbb{R} is not closed under multiplication by complex numbers (e.g. $3 \cdot i = 3i \notin \mathbb{R}$), thus \mathbb{R} cannot be a C-vector space.
- (f) Let $\mathbb{Q}' = \mathbb{Q} + \sqrt{2}\mathbb{Q}$ and $a, b, c, d, e, f \in \mathbb{Q}$. Then
 - (i) $(a + \sqrt{2}b) + (c + \sqrt{2}d) = (a + c) + (b + d)\sqrt{2} \in \mathbb{Q}';$ (ii) $(a + \sqrt{2}b) + ((c + \sqrt{2}d) + (e + \sqrt{2}f)) = (a + c + e) + \sqrt{2}(b + d + f) = ((a + \sqrt{2}b) + (c + \sqrt{2}d)) + (c + \sqrt{2}d) + ($ $(e+\sqrt{2}f);$
 - (iii) Neutral element $0 + 0\sqrt{2} \in \mathbb{Q}'$;
 - (iv) For any $a + \sqrt{2}b \in \mathbb{Q}'$ its inverse is $-a \sqrt{2}b \in \mathbb{Q}'$;

(v)
$$(a + \sqrt{2}b) + (c + \sqrt{2}d) = (a + c) + \sqrt{2}(b + d) = (c + \sqrt{2}d) + (a + \sqrt{2}b).$$

Thus, \mathbb{Q}' is a commutative group.

Pick $\alpha, \beta \in \mathbb{Q}$. Then

- $\alpha(\beta(a+\sqrt{2}b)) = \alpha\beta a + \sqrt{2}\alpha\beta b = (\alpha\beta)(a+\sqrt{2}b);$
- $(\alpha + \beta)(a + \sqrt{2}b) = \alpha a + \beta a + \sqrt{2}\alpha b\sqrt{2}\beta b = \alpha(a + \sqrt{2}b) + \beta(a + \sqrt{2}b).$

Thus, \mathbb{Q}' is a vector space. Its basis is $\{1, \sqrt{2}\}$ and dim $\mathbb{Q}' = 2$. \mathbb{Q}' is also a commutative ring with 1:

- (i) $(\mathbb{Q}', +)$ is a commutative group;
- (ii) Associativity under multiplication holds: $(a + \sqrt{2}b)((c + \sqrt{2}d)(e + \sqrt{2}f)) = (a + \sqrt{2}b)((ce + 2df + \sqrt{2}(de + cf))) = (ace + 2adf + 2bde + 2bcf) + \sqrt{2}(ade + acf + bce + 2bdf) = ((a + \sqrt{2}b)(c + \sqrt{2}d))(e + \sqrt{2}f));$
- (iii) Distributivity holds: $(a + \sqrt{2}b)((c + \sqrt{2}d) + (e + \sqrt{2}f)) = ((ac + 2bd) + \sqrt{2}(ad + bc)) + ((ae + 2bf) + \sqrt{2}(af + be)) = (a + \sqrt{2}b)(c + \sqrt{2}d) + (a + \sqrt{2}b)(e + \sqrt{2}f);$
- (iv) Commutativity under multiplication holds: $(a + \sqrt{2}b)(c + \sqrt{2}d) = (ac + 2bd) + \sqrt{2}(ad + bc) = (c + \sqrt{2}d)(a + \sqrt{2}b);$
- (v) $1 \in \mathbb{Q}'$.

Moreover, \mathbb{Q}' is a field. It is sufficient to show that $(\mathbb{Q}' \setminus \{0\}, \cdot)$ is a commutative group; in fact, it is sufficient to demonstrate that any element in $\mathbb{Q}' \setminus \{0\}$ has a multiplicative inverse. But for any $(a + \sqrt{2}b) \in \mathbb{Q}' \setminus \{0\}$ its inverse is $\frac{a}{a^2 - 2b^2} - \sqrt{2}\frac{b}{a^2 - 2b^2} \in \mathbb{Q}' \setminus \{0\}$.

- (g) Since $\mathbb{R}[x]$ is a principle ideal domain, any ideal I in $\mathbb{R}[x]$ is generated by a single element, i.e. $I = p(x)\mathbb{R}[x]$ for some $p(x) \in \mathbb{R}[x]$. Notice that $\mathbb{R}[x]$ is commutative, so I is a two-sided ideal. Let $p(x)a(x) \in p(x)\mathbb{R}[x] = I$ and $\alpha, \beta \in \mathbb{R}$. Then
 - (i) (I, +) is obviously a commutative ring, since I is a subring of a commutative ring $(\mathbb{R}[x], +)$;
 - (ii) Obviously, $\alpha(\beta p(x)a(x)) = (\alpha\beta)p(x)a(x)$ and
 - (iii) $(\alpha + \beta)p(x)a(x) = \alpha p(x)a(x) + \beta p(x)a(x).$

Thus, I is a vector space. Its basis is the basis of $\mathbb{R}[x]$ multiplied by p(x), namely $\{p(x)x^i \mid i \ge 0\}$. dim $I = \infty$.

(h) Since $p(x)\mathbb{R}[x]$ is an ideal in $\mathbb{R}[x]$, $(\mathbb{R}[x]/p(x)\mathbb{R}[x], +, \cdot)$ is a ring. Since

 $\alpha(a(x) \mod p(x)) \mod p(x) = (\alpha a(x)) \mod p(x)$

and

$$a(x) + (b(x) \mod p(x)) \mod p(x) = (a(x) + b(x)) \mod p(x),$$

it is obvious that associativity and distributivity holds. Thus, $\mathbb{R}[x]/p(x)\mathbb{R}[x]$ is an \mathbb{R} -vector space. Its basis is $\{x^i \mid i = 0, \dots, \deg p(x) - 1\}$ and $\dim \mathbb{R}[x]/p(x)\mathbb{R}[x] = \deg p(x)$.

2. (56 pts)

(a) ϕ is a linear mapping:

$$\phi(a\begin{pmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{pmatrix}+b\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix})=a\alpha_1+a\alpha_2+a\alpha_3+b\beta_1+b\beta_2+b\beta_3=a\phi(\begin{pmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{pmatrix})+b\phi(\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix}).$$

$$\cdot \ \text{ker} \ \phi = \{\begin{pmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{pmatrix} \mid \alpha_1+\alpha_2+\alpha_3=0\} = \langle \begin{pmatrix}1\\0\\-1\end{pmatrix}, \begin{pmatrix}0\\1\\-1\end{pmatrix}\rangle; \ \text{dim ker} \ \phi = 2; \ \text{thus, the mapping is not injective;}$$

- $\operatorname{im}\phi = \mathbb{R}$ and $\operatorname{dim}\operatorname{im}\phi = 1$; thus, the mapping is surjective;

- $\mathbb{R}^3 / \ker \phi \simeq \mathbb{R}.$
- (b) ϕ is a linear mapping:

$$\phi(a\begin{pmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{pmatrix}+b\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix})=a\alpha_1+b\beta_1=a\phi(\begin{pmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{pmatrix})+b\phi(\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix}).$$

- $\ker \phi = \left\{ \begin{pmatrix} 0\\ \alpha_2\\ \alpha_3 \end{pmatrix} \right\} = \left\langle \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right\rangle$; dim $\ker \phi = 2$; thus, the mapping is not injective;

- $\operatorname{im}\phi = \mathbb{R}$ and $\operatorname{dim}\operatorname{im}\phi = 1$; thus, the mapping is surjective;
- $\mathbb{R}^3 / \ker \phi \simeq \mathbb{R}.$
- (c) ϕ is not a linear mapping. E.g. $\phi(1-1) = 0 \neq 2 = \phi 1 + \phi(-1)$.
- (d) ϕ is not a linear mapping. E.g. $\phi(i+i) = \frac{\pi}{2} \neq \pi = \phi(i) + \phi(i)$, where $i = \sqrt{-1}$.
- (e) ϕ is a linear mapping:

$$\phi(aq(x)+bs(x))=x(aq(x)+bs(x))=axq(x)+bxs(x)=a\phi(q(x))+b\phi(s(x))$$

- ker $\phi = \{q(x) \in \mathbb{F}[x] \mid xq(x) = 0\} = \{0\}$. Thus, the mapping is injective. The basis of ker ϕ is an empty set, its dimension is 0;
- $\operatorname{im} \phi = x \mathbb{F}[x]$, its dimension is ∞ . Since $x \mathbb{F}[x] \neq \mathbb{F}[x]$, the mapping is not surjective.
- $\mathbb{F}[x]/\ker\phi = \mathbb{F}[x] \simeq x\mathbb{F}[x].$
- (f) ϕ is not a linear mapping because \mathbbm{Z} is not a vector space.
- (g) ϕ is a linear mapping:

$$\phi(aq(x) + bs(x)) = aq'(x) + bs'(x) = a\phi(q(x)) + b\phi(s(x))$$

- ker $\phi = \{q(x) \in \mathbb{F}[x] \mid q'(x) = 0\} = \mathbb{F}$. Thus, the mapping is not injective. The basis of ker ϕ is $\{1\}$, its dimension is 1;
- $\operatorname{im} \phi = \mathbb{F}[x]$, its dimension is ∞ . Also, the mapping is surjective.
- $\mathbb{F}[x]/\ker\phi = \mathbb{F}[x]/\mathbb{F} \simeq \mathbb{F}[x].$
- (h) ϕ is a linear mapping:

$$\phi(aq(x) + bs(x)) = aq'(x) + bs'(x) = a\phi(q(x)) + b\phi(s(x)).$$

- ker $\phi = \{q(x) \in \mathbb{F}_n[x] \mid q'(x) = 0\} = \mathbb{F}$. Thus, the mapping is not injective. The basis of ker ϕ is $\{1\}$, its dimension is 1;
- $\operatorname{im} \phi = \mathbb{F}_{n-1}[x]$, its dimension is *n*. Since $\mathbb{F}_{n-1}[x] \neq \mathbb{F}_n[x]$, the mapping is not surjective.

-
$$\mathbb{F}_n[x]/\ker\phi = \mathbb{F}_n[x]/\mathbb{F} \simeq \mathbb{F}_{n-1}[x]$$

- (a) Let $U = x^{n+1} \mathbb{F}[x]$. Then
 - (i) $\mathbb{F}_n[x] \cap U = \{0\};$

(ii)
$$\mathbb{F}_n[x] + U = \langle 1, x, \dots, x^n \rangle + \langle x^{n+1}, x^{n+2}, \dots \rangle = \langle 1, x, \dots, x^n, x^{n+1}, x^{n+2}, \dots \rangle = \mathbb{F}[x].$$

Thus, $\mathbb{F}_n[x] \oplus U = F[x].$

- (b) The basis of U is $\{x^{n+1}, x^{n+2}, \dots\}$; its dimension is ∞ .
- (c) Since $\mathbb{F}[x]/\mathbb{F}_n[x] \simeq U$, the basis of $\mathbb{F}[x]/\mathbb{F}_n[x]$ is $\{x^{n+i} + \mathbb{F}_n[x] \mid i > 0\}$ and the dimension is ∞ .
- 4. (20 pts)
 - (a) We learned in the class that $\mathbb{F}[x]/p(x)$ is a ring (actually, a Euclidean domain). To show that it is a field, we only need to demonstrate that every non-zero element in $\mathbb{F}[x]/p(x)$ has an inverse. Let q(x) be such an element. Since p(x) is irreducible over \mathbb{F} ,

$$gcd(q(x), p(x)) = 1 \quad \Rightarrow \quad \exists s(x), t(x) \in \mathbb{F}[x]/p(x) \colon q(x)s(x) + p(x)t(x) = 1$$
$$\Rightarrow \quad (q(x)s(x) + p(x)t(x)) \mod p(x) = 1 \mod p(x)$$
$$\Rightarrow \quad q(x)s(x) \equiv 1 \mod p(x)$$

Thus, s(x) is the inverse of q(x) in \mathbb{F}' .

- (b) Since \mathbb{F}' is a ring, $(\mathbb{F}', +)$ is a commutative group. The associativity and distributivity laws over \mathbb{F} hold (obvious). Thus, \mathbb{F}' is an \mathbb{F} -vector space. Let $n = \deg p(x)$. Consider $B = \{1, x, \dots, x^{n-1}\}$ - a set of n independent elements of \mathbb{F}' . On one hand, $B \subset \mathbb{F}'$, so $\langle B \rangle \subseteq \mathbb{F}'$. On the other hand, any element $q(x) \in \mathbb{F}'$ can be written as $q(x) = \sum_{i=0}^{n-1} a_i x^i \in \langle B \rangle$, so $\mathbb{F}' \subseteq \langle B \rangle$. Thus, $\mathbb{F}' = \langle B \rangle$, B is the basis of \mathbb{F}' , and dim $\mathbb{F}' = n$.
- (c) Over Q: Q/(x² − 2); Over R: R/(x² + 2);
 Over C: no extension field exists for C since any polynomial is completely reducible over C (it is an *algebraically closed* field).