18-799F Algebraic Signal Processing Theory Spring 2007 Solutions: Assignment 2

1. (30 pts)

- (a) $\operatorname{GL}_n(\mathbb{R})$ is not closed under matrix addition: for any $A \in \operatorname{GL}_n(\mathbb{R})$: $A + (-A) = 0 \notin \operatorname{GL}_n(\mathbb{R})$. On the other hand, $\operatorname{GL}_n(\mathbb{R})$ is closed under matrix multiplication, since for $A, B \in \operatorname{GL}_n(\mathbb{R})$: det AB =det $A \det B \Rightarrow AB \in \operatorname{GL}_n(\mathbb{R})$; although this operation is not commutative. Thus, the most structure $\operatorname{GL}_n(\mathbb{R})$ has is $(\operatorname{GL}_n(\mathbb{R}), \cdot)$ is a multiplicative group.
- (b) Suppose $\frac{p(x)}{q(x)}, \frac{t(x)}{s(x)} \in S$. Then $\frac{p(x)}{q(x)} + \frac{t(x)}{s(x)} = \frac{p(x)s(x)+t(x)q(x)}{q(x)s(x)} \in S$ and $\frac{p(x)}{q(x)} \cdot \frac{t(x)}{s(x)} = \frac{p(x)t(x)}{q(x)s(x)} = \frac{t(x)}{s(x)} \cdot \frac{p(x)}{q(x)}$, because the set of zeros of q(x)s(x) is just the union of the sets of zeros of q(x) and s(x). In addition, $0, 1 \in S$, and for any $\frac{p(x)}{q(x)} \in S$, its additive inverse is $-\frac{p(x)}{q(x)} \in S$. Additionally, S is obviously commutative. Since multiplicative inverse does not always exist (e.g. x 2 does not have an inverse in S), S is a commutative ring. Moreover, notice that S does not have any zero divisors, so S is actually **an integral domain**.
- (c) Notice that S is not closed under addition: $\frac{x+1}{x-1} + \frac{1}{x-1} = \frac{x+2}{x-1} \notin S$. However, it is easy to verify that (S, \cdot) is a commutative group.
- (d) S is not closed under addition: $x^k x^k = 0 \notin S$. However, S is closed under multiplication: $x^k x^l = x^l x^k = x^{kl} \in S$. Also there is a neutral element $1 \in S$, as well as any $x^k \in S$ has an inverse $x^{-k} \in S$. Thus, S is a commutative group. In fact, $S = \langle x \rangle_{\text{group}}$.
- 2. (21 pts) Let's define $i = \sqrt{-1}$.
 - (a) $\mathbb{R}[x]$ and \mathbb{C} are rings;
 - $\phi(p(x) + q(x)) = (p+q)(i) = p(i) + q(i) = \phi(p(x)) + \phi(q(x));$
 - $\phi(p(x)q(x)) = (pq)(i) = p(i)q(i) = \phi(p(x))\phi(q(x)).$

Thus, ϕ is a ring homomorphism.

- (b) For any $z \in \mathbb{C}$, define $p_z(x) = \text{Re}z + x \text{Im}z \in \mathbb{R}[x]$. Then p(i) = z. Thus, ϕ is surjective.
- (c) $\ker \phi = \{t(x) \mid t(x) \in \mathbb{R}[x], t(i) = 0\}$. Since $i \notin \mathbb{R}$, -i must also be a root of $t(x) \in \ker \phi$. Thus, $(x-i)(x+i) = x^2 + 1|t(x)$ for each $t(x) \in \ker \phi$. It implies that $\ker \phi = (x^2 + 1)\mathbb{R}[x]$. The homomorphism theorem yields $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x] \simeq \operatorname{im} \phi = \mathbb{C}$
- 3. (14 pts) Consider the following mapping:

$$\phi: \quad \operatorname{GL}_n(\mathbb{R}) \quad \to \quad \mathbb{R} \setminus \{0\}$$
$$A \quad \mapsto \quad \det A$$

Observe that

- $(\operatorname{GL}_n(\mathbb{R}), \cdot)$ and $(\mathbb{R} \setminus \{0\}, \cdot)$ are groups;
- $\phi(AB) = \det AB = \det A \det B = \phi(A)\phi(B);$
- ker $\phi = \{A \in \operatorname{GL}_n(\mathbb{R}) \mid \det A = 1\} = \operatorname{SL}_n(\mathbb{R}).$
- For any $r \in \mathbb{R} \setminus \{0\}$ there exists $A \in \operatorname{GL}_n(\mathbb{R})$ such that $\det A = r$, namely $A = \operatorname{diag}(r, 1, \ldots, 1)$. Thus, $\operatorname{im} \phi = \mathbb{R} \setminus \{0\}$.

Thus, ϕ is a group homomorphism with ker $\phi = \mathrm{SL}_n(\mathbb{R})$. It follows that

- (a) $(SL_n(\mathbb{R}), \cdot) = (\ker \phi, \cdot) \trianglelefteq (GL_n(\mathbb{R}), \cdot);$ and using the homomorphism theorem,
- (b) $\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R}) \simeq (\mathbb{R} \setminus \{0\}, \cdot).$

4. (35 pts)

- (a) Assume, $p(x) \in \mathbb{C}[x]^{\times}$. Then there exists $q(x) \in \mathbb{C}[x]^{\times}$, such that p(x)q(x) = 1. However, $0 = \deg 1 = \deg p(x)q(x) = \deg p(x) + \deg q(x)$. This implies $\deg p(x) = \deg q(x) = 0$. Thus, $\mathbb{C}[x]^{\times} \subseteq \mathbb{C}$. On the other hand, for any $z \in \mathbb{C} \setminus \{0\}$ there is $\frac{1}{z} \in \mathbb{C} \setminus \{0\}$, such that $z\frac{1}{z} = 1$. Thus, $\mathbb{C} \setminus \{0\} \subseteq \mathbb{C}[x]^{\times}$. Since 0 does not have an inverse, we conclude that $\mathbb{C} \setminus \{0\} = \mathbb{C}[x]^{\times}$.
- (b) Euclidean algorithm yields $gcd(x^3 x^2 + 2x 2, x^2 1) = 3x 3$:

$$x^{3} - x^{2} + 2x - 2 = (x^{2} - 1)(x - 1) + 3x - 3$$
$$x^{2} - 1 = (3x - 3)\frac{1}{3}(x + 1) + 0$$

It follows that $(x^3 - x^2 + 2x - 2)\mathbb{C}[x] + (x^2 - 1)\mathbb{C}[x] = (3x - 3)\mathbb{C}[x] = (x - 1)\mathbb{C}[x].$

- (c) Since $p(x)\mathbb{C}[x]$ is a (two-sided) ideal in $\mathbb{C}[x]$, $\mathbb{C}[x]/p(x)\mathbb{C}[x]$ is a ring (with respect to addition and multiplication modulo p(x)).
- (d) (i) For any $k \ge 0$, let k = 4m + r, where $m = \lfloor \frac{k}{4} \rfloor$ and $r = k \mod 4$. Then, using the assumption $x^4 1 = 0$,

$$x^k \mod (x^4 - 1) = x^{4m+r} \mod (x^4 - 1) = (x^4)^m \cdot x^r \mod (x^4 - 1)$$

= $((x^4 - 1) + 1)^m \cdot x^r \mod (x^4 - 1) = x^r = x^k \mod 4.$

(ii) For any
$$p(x) \in (\mathbb{C}[x]/(x^4 - 1)\mathbb{C}[x])^{\times}$$
 we have:

$$p(x) \in (\mathbb{C}[x]/(x^4 - 1)\mathbb{C}[x])^{\times} \iff \exists q(x) \in (\mathbb{C}[x]/(x^4 - 1)\mathbb{C}[x])^{\times} : p(x)q(x) = 1 \mod (x^4 - 1)$$
$$\Leftrightarrow p(x)q(x) = 1 + s(x)(x^4 - 1)$$
$$\Leftrightarrow p(x)q(x) - s(x)(x^4 - 1) = 1$$
$$\Leftrightarrow \gcd (p(x), x^4 - 1) = 1.$$

Thus, $(\mathbb{C}[x]/(x^4-1)\mathbb{C}[x])^{\times} = \{p(x) \mid p(x) \in \mathbb{C}[x]/((x^4-1)\mathbb{C}[x]), \gcd(p(x), x^4-1) = 1\}$. This is precisely the set of polynomials in $(\mathbb{C}[x]/(x^4-1)\mathbb{C}[x])^{\times}$ that have no zeros in $\{1, -1, i, -i\}$.

5. Extra credit problem (20 pts)

- (a) (R, +) is a commutative group under component-wise addition because each $(R_i, +)$, i = 1, ..., n is a commutative group: for any $a, b, c \in R$
 - $\begin{aligned} & a + b \in R; \\ & (a + b) + c = (a_1 + b_1, \dots, a_n + b_n) + (c_1, \dots, c_n) = (a_1 + b_1 + c_1, \dots, a_n + b_n + c_n) = (a_1, \dots, a_n) + \\ & (b_1 + c_1, \dots, b_n + c_n) = a + (b + c); \\ & a + b = (a_1 + b_1, \dots, a_n + b_n) = (b_1 + a_1, \dots, b_n + a_n) = b + a; \\ & \text{Neutral element in } R \text{ is } (0, \dots, 0). \end{aligned}$ Multiplication is associative in $R: (ab)c = (a_1b_1, \dots, a_nb_n)(c_1, \dots, c_n) = (a_1b_1c_1, \dots, a_nb_nc_n) = \\ & (a_1, \dots, a_n)(b_1c_1, \dots, b_nc_n) = a(bc). \end{aligned}$ Distributivity law holds: $(a + b)c = ((a_1 + b_1)c_1, \dots, (a_n + b_n)c_n) = (a_1c_1 + b_1c_1, \dots, a_nc_n + b_nc_n) = \\ & (a_1c_1, \dots, a_nc_n) + (b_1c_1, \dots, b_nc_n) = ac + bc. \end{aligned}$ Multiplicative identity in R is $(1, \dots, 1)$.
- (b) Recall that $\mathbb{C}[x]/p(x)\mathbb{C}[x] = \{q(x) \mid q(x) \in \mathbb{C}[x], \deg q(x) < \deg p(x)\}$. As we discussed in the class, it is a ring under addition and multiplication mod p(x). Also, in the previous problem we proved that $\bigoplus_{i=1}^{n} \mathbb{C}[x]/(x \alpha_i)\mathbb{C}[x]$ is a ring. Thus, ϕ is a ring-to-ring mapping. Next, we prove that ϕ is a ring homomorphism:

$$\begin{aligned} \phi(t(x) + s(x)) &= (t(\alpha_1) + s(\alpha_1), \dots, t(\alpha_n) + s(\alpha_n)) \\ &= (t(\alpha_1), \dots, t(\alpha_n)) + (s(\alpha_1), \dots, s(\alpha_n)) = \phi(t(x)) + \phi(s(x)); \\ \phi(t(x)s(x)) &= (t(\alpha_1)s(\alpha_1), \dots, t(\alpha_n)s(\alpha_n)) = (t(\alpha_1), \dots, t(\alpha_n))(s(\alpha_1), \dots, s(\alpha_n)) = \phi(t(x))\phi(s(x)). \end{aligned}$$

Recall that any polynomial s(x), such that deg $s(x) < n = \deg p(x)$ is uniquely defined by its values in *n* points. This fact is known as *the Unisolvence Theorem* and is used in polynomial interpolation. The only such s(x) that maps *n* points to 0 is a zero polynomial. Thus, ϕ is injective because ker $\phi = \{0\}$.

 ϕ is also surjective for the above reason: for any $(\beta_1, \ldots, \beta_n) \in \bigoplus_{i=1}^n \mathbb{C}[x]/(x - \alpha_i)\mathbb{C}[x]$, there is a polynomial $s(x) \in (\mathbb{C}[x]/p(x)\mathbb{C}[x])$ that maps α_i to β_i $(i = 1, \ldots, n)$.

So, ϕ is a bijective ring homomorphism, i.e. ϕ is an isomorphism. Thus,

$$\mathbb{C}[x]/p(x)\mathbb{C}[x] \cong \bigoplus_{i=1}^{n} \mathbb{C}[x]/(x-\alpha_i)\mathbb{C}[x].$$