18-799F Algebraic Signal Processing Theory

Spring 2007
Solutions: Assignment 2

1. (30 pts)
(a) $\mathrm{GL}_{n}(\mathbb{R})$ is not closed under matrix addition: for any $A \in \mathrm{GL}_{n}(\mathbb{R}): A+(-A)=0 \notin \mathrm{GL}_{n}(\mathbb{R})$. On the other hand, $\mathrm{GL}_{n}(\mathbb{R})$ is closed under matrix multiplication, since for $A, B \in \mathrm{GL}_{n}(\mathbb{R})$: $\operatorname{det} A B=$ $\operatorname{det} A \operatorname{det} B \Rightarrow A B \in \mathrm{GL}_{n}(\mathbb{R})$; although this operation is not commutative. Thus, the most structure $\mathrm{GL}_{n}(\mathbb{R})$ has is $\left(\mathrm{GL}_{n}(\mathbb{R}), \cdot\right)$ is a multiplicative group.
(b) Suppose $\frac{p(x)}{q(x)}, \frac{t(x)}{s(x)} \in S$. Then $\frac{p(x)}{q(x)}+\frac{t(x)}{s(x)}=\frac{p(x) s(x)+t(x) q(x)}{q(x) s(x)} \in S$ and $\frac{p(x)}{q(x)} \cdot \frac{t(x)}{s(x)}=\frac{p(x) t(x)}{q(x) s(x)}=\frac{t(x)}{s(x)} \cdot \frac{p(x)}{q(x)}$, because the set of zeros of $q(x) s(x)$ is just the union of the sets of zeros of $q(x)$ and $s(x)$. In addition, $0,1 \in S$, and for any $\frac{p(x)}{q(x)} \in S$, its additive inverse is $-\frac{p(x)}{q(x)} \in S$. Additionally, S is obviously commutative. Since multiplicative inverse does not always exist (e.g. $x-2$ does not have an inverse in S), S is a commutative ring. Moreover, notice that S does not have any zero divisors, so S is actually an integral domain.
(c) Notice that S is not closed under addition: $\frac{x+1}{x-1}+\frac{1}{x-1}=\frac{x+2}{x-1} \notin S$. However, it is easy to verify that (S, \cdot) is a commutative group.
(d) S is not closed under addition: $x^{k}-x^{k}=0 \notin S$. However, S is closed under multiplication: $x^{k} x^{l}=x^{l} x^{k}=x^{k l} \in S$. Also there is a neutral element $1 \in S$, as well as any $x^{k} \in S$ has an inverse $x^{-k} \in S$. Thus, S is a commutative group. In fact, $S=\langle x\rangle_{\text {group }}$.
2. (21 pts) Let's define $i=\sqrt{-1}$.
(a) $-\mathbb{R}[x]$ and \mathbb{C} are rings;

- $\phi(p(x)+q(x))=(p+q)(i)=p(i)+q(i)=\phi(p(x))+\phi(q(x)) ;$
- $\phi(p(x) q(x))=(p q)(i)=p(i) q(i)=\phi(p(x)) \phi(q(x))$.

Thus, ϕ is a ring homomorphism.
(b) For any $z \in \mathbb{C}$, define $p_{z}(x)=\operatorname{Re} z+x \operatorname{Im} z \in \mathbb{R}[x]$. Then $p(i)=z$. Thus, ϕ is surjective.
(c) $\operatorname{ker} \phi=\{t(x) \mid t(x) \in \mathbb{R}[x], t(i)=0\}$. Since $i \notin \mathbb{R},-i$ must also be a root of $t(x) \in \operatorname{ker} \phi$. Thus, $(x-i)(x+i)=x^{2}+1 \mid t(x)$ for each $t(x) \in \operatorname{ker} \phi$. It implies that $\operatorname{ker} \phi=\left(x^{2}+1\right) \mathbb{R}[x]$.
The homomorphism theorem yields $\mathbb{R}[x] /\left(x^{2}+1\right) \mathbb{R}[x] \simeq \operatorname{im} \phi=\mathbb{C}$
3. (14 pts) Consider the following mapping:

$$
\begin{aligned}
\phi: \quad \mathrm{GL}_{n}(\mathbb{R}) & \rightarrow \mathbb{R} \backslash\{0\} \\
A & \mapsto \operatorname{det} A
\end{aligned}
$$

Observe that

- $\left(\mathrm{GL}_{n}(\mathbb{R}), \cdot\right)$ and $(\mathbb{R} \backslash\{0\}, \cdot)$ are groups;
- $\phi(A B)=\operatorname{det} A B=\operatorname{det} A \operatorname{det} B=\phi(A) \phi(B) ;$
- $\operatorname{ker} \phi=\left\{A \in \mathrm{GL}_{n}(\mathbb{R}) \mid \operatorname{det} A=1\right\}=\mathrm{SL}_{n}(\mathbb{R})$.
- For any $r \in \mathbb{R} \backslash\{0\}$ there exists $A \in \mathrm{GL}_{n}(\mathbb{R})$ such that $\operatorname{det} A=r$, namely $A=\operatorname{diag}(r, 1, \ldots, 1)$. Thus, $\operatorname{im} \phi=\mathbb{R} \backslash\{0\}$.

Thus, ϕ is a group homomorphism with $\operatorname{ker} \phi=\mathrm{SL}_{n}(\mathbb{R})$. It follows that
(a) $\left(\mathrm{SL}_{n}(\mathbb{R}), \cdot\right)=(\operatorname{ker} \phi, \cdot) \unlhd\left(\mathrm{GL}_{n}(\mathbb{R}), \cdot\right)$; and using the homomorphism theorem,
(b) $\mathrm{GL}_{n}(\mathbb{R}) / \mathrm{SL}_{n}(\mathbb{R}) \simeq(\mathbb{R} \backslash\{0\}, \cdot)$.
4. (35 pts)
(a) Assume, $p(x) \in \mathbb{C}[x]^{\times}$. Then there exists $q(x) \in \mathbb{C}[x]^{\times}$, such that $p(x) q(x)=1$. However, $0=\operatorname{deg} 1=\operatorname{deg} p(x) q(x)=\operatorname{deg} p(x)+\operatorname{deg} q(x)$. This implies $\operatorname{deg} p(x)=\operatorname{deg} q(x)=0$. Thus, $\mathbb{C}[x]^{\times} \subseteq \mathbb{C}$. On the other hand, for any $z \in \mathbb{C} \backslash\{0\}$ there is $\frac{1}{z} \in \mathbb{C} \backslash\{0\}$, such that $z \frac{1}{z}=1$. Thus, $\mathbb{C} \backslash\{0\} \subseteq \mathbb{C}[x]^{\times}$. Since 0 does not have an inverse, we conclude that $\mathbb{C} \backslash\{0\}=\mathbb{C}[x]^{\times}$.
(b) Euclidean algorithm yields $\operatorname{gcd}\left(x^{3}-x^{2}+2 x-2, x^{2}-1\right)=3 x-3$:

$$
\begin{aligned}
x^{3}-x^{2}+2 x-2 & =\left(x^{2}-1\right)(x-1)+3 x-3 \\
x^{2}-1 & =(3 x-3) \frac{1}{3}(x+1)+0
\end{aligned}
$$

It follows that $\left(x^{3}-x^{2}+2 x-2\right) \mathbb{C}[x]+\left(x^{2}-1\right) \mathbb{C}[x]=(3 x-3) \mathbb{C}[x]=(x-1) \mathbb{C}[x]$.
(c) Since $p(x) \mathbb{C}[x]$ is a (two-sided) ideal in $\mathbb{C}[x], \mathbb{C}[x] / p(x) \mathbb{C}[x]$ is a ring (with respect to addition and multiplication modulo $p(x)$).
(d) (i) For any $k \geq 0$, let $k=4 m+r$, where $m=\left\lfloor\frac{k}{4}\right\rfloor$ and $r=k \bmod 4$. Then, using the assumption $x^{4}-1=0$,

$$
\begin{aligned}
x^{k} \bmod \left(x^{4}-1\right) & =x^{4 m+r} \bmod \left(x^{4}-1\right)=\left(x^{4}\right)^{m} \cdot x^{r} \quad \bmod \left(x^{4}-1\right) \\
& =\left(\left(x^{4}-1\right)+1\right)^{m} \cdot x^{r} \bmod \left(x^{4}-1\right)=x^{r}=x^{k} \bmod 4
\end{aligned}
$$

(ii) For any $p(x) \in\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times}$we have:

$$
\begin{aligned}
p(x) \in\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times} & \Leftrightarrow \exists q(x) \in\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times}: p(x) q(x)=1 \quad \bmod \left(x^{4}-1\right) \\
& \Leftrightarrow p(x) q(x)=1+s(x)\left(x^{4}-1\right) \\
& \Leftrightarrow p(x) q(x)-s(x)\left(x^{4}-1\right)=1 \\
& \Leftrightarrow \operatorname{gcd}\left(p(x), x^{4}-1\right)=1 .
\end{aligned}
$$

Thus, $\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times}=\left\{p(x) \mid p(x) \in \mathbb{C}[x] /\left(\left(x^{4}-1\right) \mathbb{C}[x]\right), \operatorname{gcd}\left(p(x), x^{4}-1\right)=1\right\}$. This is precisely the set of polynomials in $\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times}$that have no zeros in $\{1,-1, i,-i\}$.

5. Extra credit problem (20 pts)

(a) $(R,+)$ is a commutative group under component-wise addition because each $\left(R_{i},+\right), i=1, \ldots, n$ is a commutative group: for any $a, b, c \in R$

- $a+b \in R$;
$-(a+b)+c=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)+\left(c_{1}, \ldots, c_{n}\right)=\left(a_{1}+b_{1}+c_{1}, \ldots, a_{n}+b_{n}+c_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)+$ $\left(b_{1}+c_{1}, \ldots, b_{n}+c_{n}\right)=a+(b+c) ;$
$-a+b=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)=\left(b_{1}+a_{1}, \ldots, b_{n}+a_{n}\right)=b+a$;
- Neutral element in R is $(0, \ldots, 0)$.

Multiplication is associative in $R:(a b) c=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)\left(c_{1}, \ldots, c_{n}\right)=\left(a_{1} b_{1} c_{1}, \ldots, a_{n} b_{n} c_{n}\right)=$ $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1} c_{1}, \ldots, b_{n} c_{n}\right)=a(b c)$.
Distributivity law holds: $(a+b) c=\left(\left(a_{1}+b_{1}\right) c_{1}, \ldots,\left(a_{n}+b_{n}\right) c_{n}\right)=\left(a_{1} c_{1}+b_{1} c_{1}, \ldots, a_{n} c_{n}+b_{n} c_{n}\right)=$ $\left(a_{1} c_{1}, \ldots, a_{n} c_{n}\right)+\left(b_{1} c_{1}, \ldots, b_{n} c_{n}\right)=a c+b c$.
Multiplicative identity in R is $(1, \ldots, 1)$.
Thus, $(R,+, \cdot)$ is a ring.
(b) Recall that $\mathbb{C}[x] / p(x) \mathbb{C}[x]=\{q(x) \mid q(x) \in \mathbb{C}[x]$, $\operatorname{deg} q(x)<\operatorname{deg} p(x)\}$. As we discussed in the class, it is a ring under addition and multiplication $\bmod p(x)$. Also, in the previous problem we proved that $\bigoplus_{i=1}^{n} \mathbb{C}[x] /\left(x-\alpha_{i}\right) \mathbb{C}[x]$ is a ring. Thus, ϕ is a ring-to-ring mapping.
Next, we prove that ϕ is a ring homomorphism:

$$
\begin{aligned}
\phi(t(x)+s(x)) & =\left(t\left(\alpha_{1}\right)+s\left(\alpha_{1}\right), \ldots, t\left(\alpha_{n}\right)+s\left(\alpha_{n}\right)\right) \\
& =\left(t\left(\alpha_{1}\right), \ldots, t\left(\alpha_{n}\right)\right)+\left(s\left(\alpha_{1}\right), \ldots, s\left(\alpha_{n}\right)\right)=\phi(t(x))+\phi(s(x)) \\
\phi(t(x) s(x)) & =\left(t\left(\alpha_{1}\right) s\left(\alpha_{1}\right), \ldots, t\left(\alpha_{n}\right) s\left(\alpha_{n}\right)\right)=\left(t\left(\alpha_{1}\right), \ldots, t\left(\alpha_{n}\right)\right)\left(s\left(\alpha_{1}\right), \ldots, s\left(\alpha_{n}\right)\right)=\phi(t(x)) \phi(s(x))
\end{aligned}
$$

Recall that any polynomial $s(x)$, such that $\operatorname{deg} s(x)<n=\operatorname{deg} p(x)$ is uniquely defined by its values in n points. This fact is known as the Unisolvence Theorem and is used in polynomial interpolation. The only such $s(x)$ that maps n points to 0 is a zero polynomial. Thus, ϕ is injective because $\operatorname{ker} \phi=\{0\}$.
ϕ is also surjective for the above reason: for any $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \bigoplus_{i=1}^{n} \mathbb{C}[x] /\left(x-\alpha_{i}\right) \mathbb{C}[x]$, there is a polynomial $s(x) \in(\mathbb{C}[x] / p(x) \mathbb{C}[x])$ that maps α_{i} to $\beta_{i}(i=1, \ldots, n)$.
So, ϕ is a bijective ring homomorphism, i.e. ϕ is an isomorphism. Thus,

$$
\mathbb{C}[x] / p(x) \mathbb{C}[x] \cong \bigoplus_{i=1}^{n} \mathbb{C}[x] /\left(x-\alpha_{i}\right) \mathbb{C}[x]
$$

