18-799F Algebraic Signal Processing Theory

Spring 2007
Solutions: Assignment 1

1. (15 pts)
(a) $\langle 1\rangle=\{1\} ;$
$\langle x\rangle=\left\langle x^{5}\right\rangle=C_{6}$;
$\left\langle x^{2}\right\rangle=\left\langle x^{4}\right\rangle=\left\{1, x^{2}, x^{4}\right\} ;$
$\left\langle x^{3}\right\rangle=\left\{1, x^{3}\right\}$.
(b) $\langle 1\rangle:\{1\}$;
$C_{6}:\{x\}$ or $\left\{x^{5}\right\}$;
$\left\langle x^{2}\right\rangle:\left\{x^{2}\right\}$ or $\left\{x^{4}\right\} ;$
$\left\langle x^{3}\right\rangle:\left\{x^{3}\right\}$.
(c) $\langle 1\rangle=\{1\}$;
$\langle x\rangle=\left\langle x^{5}\right\rangle=C_{6}=\left\{x \mid x^{6}=1\right\} ;$
$\left\langle x^{2}\right\rangle=\left\langle x^{4}\right\rangle=\left\{x^{2} \mid x^{6}=1\right\} ;$ setting $y=x^{2}$ yields $C_{3}=\left\{y \mid y^{3}=1\right\} ;$
$\left\langle x^{3}\right\rangle=\left\{x^{3} \mid x^{6}=1\right\} ;$ setting $y=x^{3}$ yields $C_{2}=\left\{y \mid y^{2}=1\right\} ;$
2. (12 pts)
(a) Recall that $\cos x=\cos -x$ and $\cos x=\cos x+2 \pi k$ for $k \in \mathbb{Z}$. Then the partition is

$$
\mathbb{R} / \sim=\{[x] \mid x \in[0, \pi]\}, \text { where }[x]=\{ \pm x+2 \pi k, k \in \mathbb{Z} .\}
$$

(b) The commutative diagram for cos is:

3. (17 pts)
(a) The operation is well-defined:

Choose arbitrary $u \in[x]$ and $v \in[y]$. Then $u=x+k n$ and $v=y+l n$. Their product $u v=$ $(x+k n)(y+l n)=x y+n(x l+k y+k l n) \in[x y]$, thus $[u v]=[x y]$. So, the definition of the operation is independent of the chosen representatives.
$(\mathbb{Z} / n \mathbb{Z}, \cdot)$ is not a group because $[0] \in \mathbb{Z} / n \mathbb{Z}$ does not have an inverse.
(b) The function is well-defined:

Choose arbitrary $u \in[x]$. Then $u=x+k n$ and $u^{2}=(x+k n)^{2}=x^{2}+n\left(2 k x+k^{2} n\right) \in\left[x^{2}\right]$, thus $\left[u^{2}\right]=\left[x^{2}\right]$. So, the definition of the function is independent of the chosen representative.
(c) The function is well-defined:

Choose arbitrary $u \in[x]$. Then $u=x+k n$ and $u+1=(x+k n)+1=(x+1)+k n \in[x+1]$, thus $[u+1]=[x+1]$. So, the definition of the function is independent of the chosen representative.
4. (10 pts)
(a) (i) $\mathbb{Q} \backslash\{0\}$ is closed under multiplication.
(ii) Multiplication of rational numbers is an associative operation.
(iii) Neutral element is $1 \in \mathbb{Q} \backslash\{0\}$.
(iv) For any $\frac{p}{q} \in \mathbb{Q} \backslash\{0\}$ its inverse it $\frac{q}{p} \in \mathbb{Q} \backslash\{0\}$.
(b) The minimal set of generators is $\{-1, p \mid p \in \mathbb{N}, p$ is prime $\}$.
5. (20 pts)
(a) $\left|D_{8} / C_{4}\right|=\left|D_{8}\right| /\left|C_{4}\right|=2$.
(b) $D_{8}=C_{4} \cup y C_{4}$ since $y \notin C_{4}$.
(c) From b) we immediately see that $D_{8}=\left\{1, x, x^{2}, x^{3}, x^{4}, y x, y x^{2}, y x^{3}, y x^{4}\right\}$.
(d) Two solutions:
(i) Use the solution of problem 8a (provided you solved the problem).
(ii) To show that $C_{4} \unlhd D_{8}$, we need to prove that for any $z \in D_{8}: z C_{4} z^{-1}=C_{4}$.

$$
\text { Case 1: } z=x^{i} \text {. Then } z C_{4} z^{-1}=\left\{x^{i} x^{-i}, x^{i} x x^{-i}, x^{i} x^{2} x^{-i}, x^{i} x^{3} x^{-i}\right\}=\left\{1, x, x^{2}, x^{3}\right\}=C_{4} .
$$ Case 2: $z=y x^{i}$. Since $x y=y x^{-1}$ and $\left(y x^{i}\right)^{-1}=x^{-i} y^{-1}$,

$$
\begin{aligned}
z C_{4} z^{-1} & =\left\{y x^{i} x^{-i} y^{-1}, y x^{i} x x^{-i} y^{-1}, y x^{i} x^{2} x^{-i} y^{-1}, y x^{i} x^{3} x^{-i} y^{-1}\right\} \\
& =\left\{1, x^{-1}, x^{-2}, x^{-3}\right\}=\left\{1, x^{3}, x^{2}, x\right\}=C_{4} .
\end{aligned}
$$

6. (15 pts)
(a) This is an equivalence relation because it is:
i. Reflexive: $p(x) \mid(s(x)-s(x)) \Rightarrow s(X) \sim s(x)$;
ii. Symmetric: $s(x) \sim q(x) \Rightarrow p(x)|(s(x)-q(x)) \Rightarrow p(x)|(q(x)-s(x)) \Rightarrow q(x) \sim s(x)$;
iii. Transitive: $s(x) \sim q(x), q(x) \sim r(x) \Rightarrow p(x)|(s(x)-q(x)), p(x)|(q(x)-r(x)) \Rightarrow p(x) \mid(s(x)-$ $q(x)+q(x)-r(x)) \Rightarrow p(x) \mid(s(x)-r(x)) \Rightarrow s(x) \sim r(x)$.
(b) $H=\{s(x) \mid s(x)$ is such that $p(x) \mid s(x)\}=p(x) \mathbb{R}[x]$. This yields $r(x) \sim s(x) \Leftrightarrow p(x) \mid(r(x)-$ $s(x)) \Leftrightarrow(r(x)-s(x)) \in H \Leftrightarrow r(x)+H=s(x)+H$.
(c) Since $(\mathbb{R}[x],+)$ is commutative and $(H,+) \unlhd(\mathbb{R}[x],+)$, then $\mathbb{R}[x] / H$ is a group under addition.
7. (11 pts)
(a) G is closed under matrix multiplication: for any $x, y \in \mathbb{R}:\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & x+y \\ 0 & 1\end{array}\right) \in G$. The neutral element is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in G$.
Any element in G has an inverse, namely, for any $x \in \mathbb{R}:\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Thus, G is a group under matrix multiplication.
(b) ϕ is a bijection, because it is
injective: for $x, y \in \mathbb{R}, x \neq y, \phi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \neq\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)=\phi(y) ;$
surjective: for any $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$, there is $x \in \mathbb{R}$, such that $\phi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$.
ϕ is also a homomorphism since $\phi(x+y)=\left(\begin{array}{cc}1 & x+y \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)=\phi(x) \phi(y)$. Since ϕ is a bijective homomorphism, it is an isomorphism.
8. Extra credit problem (20 pts)
(a) Since $|G / H|=2$, then $G=H \cup g H=H \cup g H$ for any $g \in G \backslash H$. Thus, $g H=H g$ for any $g \in G \backslash H$. On the other hand, since H is a subgroup, $g H=H g$ for any $g \in H$. Thus $g H=H g$ for any $g \in G \backslash H \cup H=G$, and H is normal in G.
(b) We need to prove the following statement (which is equivalent to the problem question): C_{n} has non-trivial subgroups iff n is not prime.

Proof:

\Rightarrow : If C_{n} has a non-trivial subgroup $H<C_{n}$, then $n=\left|C_{n}\right|=\left|C_{n} / H\right| \cdot|H|$. Since $|H| \neq 1$, $|H| \neq n$, and $|H|$ divides n, n is a composite number.
\Leftarrow : If $n=k m$ is not prime, then C_{n} has a proper (non-trivial) subgroup $H<G$ of order $m \neq 1, n$. In particular, a cyclic group of order k is a proper subgroup of $C_{n}: H=\left\langle x^{m} \mid x^{n}=1\right\rangle=\langle y| y^{k}=$ $1\rangle<C_{n}$.

