18-799F Algebraic Signal Processing Theory

Spring 2007
Assignment 4
Due Date: Feb. 21th $2: 30 \mathrm{pm}$ (at the beginning of class)

1. (40 pts) Let $p(x)=\sum_{i=0}^{n} \beta_{i} x^{i}, \beta_{n} \neq 0$, be a polynomial of degree n.
(a) Prove that the mapping

$$
\begin{aligned}
\phi: \mathbb{C}[x] / p(x) & \rightarrow \mathbb{C}[x] / p(x) \\
q(x) & \mapsto x q(x) \quad(\bmod p(x))
\end{aligned}
$$

is linear.
(b) Represent this mapping as a matrix B_{ϕ} with respect to the canonical basis $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$.
(c) Determine B_{ϕ} in the special case $p(x)=x^{n}-1$. Do you know this matrix?
2. (30 pts) Let $p(x)$ as in question 1. Assume that it has pairwise distinct zeros; i.e. $p(x)=\beta_{n}$. $\prod_{i=0}^{n-1}\left(x-\alpha_{i}\right)$, such that $i \neq j \Rightarrow \alpha_{i} \neq \alpha_{j}$. In the class you learned that the mapping

$$
\begin{aligned}
\phi: \mathbb{C}[x] / p(x) & \rightarrow \bigoplus_{k=0}^{n-1} \mathbb{C}[x] /\left(x-\alpha_{k}\right) \\
q(x) & \mapsto\left(q\left(\alpha_{0}\right), \ldots, q\left(\alpha_{n-1}\right)\right)
\end{aligned}
$$

is an isomorphism of algebras.
(a) Represent this mapping as a matrix B_{ϕ} with respect to the canonical bases $b=\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ in $\mathbb{C}[x] / p(x)$ and $c=\left\{e_{0}, \ldots, e_{n-1}\right\}$ in $\bigoplus_{k=0}^{n-1} \mathbb{C}[x] /\left(x-\alpha_{k}\right)$. Here, e_{k} is a canonical vector that has 0 in all positions except the k-th and 1 in the k-th position.
(b) Determine B_{ϕ} in the special case $p(x)=x^{n}-1$. Do you know the mapping $v \mapsto B_{\phi} v, v \in \mathbb{C}^{n}$?
3. (30 pts) Let $i=\sqrt{-1}$.
(a) Determine the matrix representation of the mapping $\mathbb{C}[x] /\left(x^{4}-1\right) \rightarrow \bigoplus_{k=0}^{3} \mathbb{C}[x] /\left(x-i^{k}\right)$ with respect to canonical bases as in the previous problem. Explain your answer.
(b) Determine the matrix representation of the mapping $\mathbb{C}[x] /\left(x^{4}-1\right) \rightarrow \mathbb{C}[x] /\left(x^{2}-1\right) \oplus \mathbb{C}[x] /\left(x^{2}+1\right)$, where in each summand on the right side we choose $\{1, x\}$ as a basis.
4. (20 pts) Extra-credit Let's continue the decomposition in 3(b).
(a) Completely decompose both summands

$$
\mathbb{C}[x] /\left(x^{2}-1\right) \oplus \mathbb{C}[x] /\left(x^{2}+1\right) \rightarrow(\mathbb{C}[x] /(x-1) \oplus \mathbb{C}[x] /(x+1)) \oplus(\mathbb{C}[x] /(x-i) \oplus \mathbb{C}[x] /(x+i))
$$

and determine the matrix representation of this mapping.
(b) Use the results from parts (b) and (c) to obtain a factorization of the matrix in part (a) into a product of (sparse) matrices. Write this factorization as a (correct) matrix equation. Note: make sure you follow the order of the summands in the direct sum in 3(a).

