18-799F Algebraic Signal Processing Theory

Spring 2007

Assignment 4

Due Date: Feb. 21th 2:30pm (at the beginning of class)

1. (40 pts) Let $p(x) = \sum_{i=0}^{n} \beta_i x^i$, $\beta_n \neq 0$, be a polynomial of degree n.

(a) Prove that the mapping

$$\begin{array}{rcl} \phi: & \mathbb{C}[x]/p(x) & \to & \mathbb{C}[x]/p(x) \\ & q(x) & \mapsto & xq(x) \pmod{p(x)} \end{array}$$

is linear.

- (b) Represent this mapping as a matrix B_{ϕ} with respect to the canonical basis $\{1, x, x^2, \dots, x^{n-1}\}$.
- (c) Determine B_{ϕ} in the special case $p(x) = x^n 1$. Do you know this matrix?
- 2. (30 pts) Let p(x) as in question 1. Assume that it has pairwise distinct zeros; i.e. $p(x) = \beta_n \cdot \prod_{i=0}^{n-1} (x \alpha_i)$, such that $i \neq j \Rightarrow \alpha_i \neq \alpha_j$. In the class you learned that the mapping

$$\phi: \quad \mathbb{C}[x]/p(x) \quad \to \quad \bigoplus_{k=0}^{n-1} \mathbb{C}[x]/(x-\alpha_k)$$
$$q(x) \quad \mapsto \quad (q(\alpha_0), \dots, q(\alpha_{n-1}))$$

is an isomorphism of algebras.

- (a) Represent this mapping as a matrix B_{ϕ} with respect to the canonical bases $b = \{1, x, x^2, \dots, x^{n-1}\}$ in $\mathbb{C}[x]/p(x)$ and $c = \{e_0, \dots, e_{n-1}\}$ in $\bigoplus_{k=0}^{n-1} \mathbb{C}[x]/(x - \alpha_k)$. Here, e_k is a canonical vector that has 0 in all positions except the k-th and 1 in the k-th position.
- (b) Determine B_{ϕ} in the special case $p(x) = x^n 1$. Do you know the mapping $v \mapsto B_{\phi} v, v \in \mathbb{C}^n$?
- 3. (30 pts) Let $i = \sqrt{-1}$.
 - (a) Determine the matrix representation of the mapping $\mathbb{C}[x]/(x^4-1) \to \bigoplus_{k=0}^3 \mathbb{C}[x]/(x-i^k)$ with respect to canonical bases as in the previous problem. Explain your answer.
 - (b) Determine the matrix representation of the mapping $\mathbb{C}[x]/(x^4-1) \to \mathbb{C}[x]/(x^2-1) \oplus \mathbb{C}[x]/(x^2+1)$, where in each summand on the right side we choose $\{1, x\}$ as a basis.
- 4. (20 pts) Extra-credit Let's continue the decomposition in 3(b).
 - (a) Completely decompose both summands

$$\mathbb{C}[x]/(x^2-1) \oplus \mathbb{C}[x]/(x^2+1) \to (\mathbb{C}[x]/(x-1) \oplus \mathbb{C}[x]/(x+1)) \oplus (\mathbb{C}[x]/(x-i) \oplus \mathbb{C}[x]/(x+i)).$$

and determine the matrix representation of this mapping.

(b) Use the results from parts (b) and (c) to obtain a factorization of the matrix in part (a) into a product of (sparse) matrices. Write this factorization as a (correct) matrix equation. Note: make sure you follow the order of the summands in the direct sum in 3(a).