18-799F Algebraic Signal Processing Theory

Spring 2007
Assignment 3
Due Date: Feb. 14th 2:30pm (at the beginning of class)

1. (26 pts) Which of the following are vector spaces? Show or disprove. For each vector space specify its basis and dimension, if you can.
(a) $\mathbb{F}_{n}[x]=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid a_{i} \in \mathbb{F}\right\}$ (polynomials of degree at most n) as \mathbb{F}-vector space.
(b) $\mathrm{GL}_{n}(\mathbb{R})$ as \mathbb{R}-vector space.
(c) $\mathbb{F}(x)$ as \mathbb{F}-vector space.
(d) \mathbb{C} as \mathbb{R}-vector space.
(e) \mathbb{R} as \mathbb{C}-vector space.
(f) $\mathbb{Q}+\mathbb{Q} \sqrt{2}$ as \mathbb{Q}-vector space. Is it also a ring? A field?
(g) Any ideal in $\mathbb{R}[x]$ as \mathbb{R}-vector space.
(h) $\mathbb{R}[x] /(p(x) \mathbb{R}[x])$ as \mathbb{R}-vector space.
2. (56 pts) Prove which of the following are linear mappings. For each linear mapping do the following

- specify the kernel, its dimension, and a basis
- specify the image and its dimension
- state whether it is injective, surjective, bijective
- apply the homomorphism theorem
(a)

$$
\phi: \begin{array}{cll}
\mathbb{R}^{3} & \rightarrow & \mathbb{R} \\
\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) & & \mapsto
\end{array}
$$

(b)

$$
\begin{array}{rlll}
\phi: & \mathbb{R}^{3} & \rightarrow & \mathbb{R} \\
\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) & \mapsto & \alpha_{1}
\end{array}
$$

(c)

$$
\begin{array}{rlll}
\phi: & \mathbb{C} & \rightarrow & \mathbb{R} \\
& z & \mapsto & |z|
\end{array}
$$

Reminder: for any $z \in \mathbb{C}: z=|z| e^{\sqrt{-1} \arg z}$.
(d)

$$
\begin{array}{rlll}
\phi: & \mathbb{C} & \rightarrow & \mathbb{R} \\
z & \mapsto & \arg z
\end{array}
$$

(e)

$$
\begin{array}{rlll}
\phi: & \mathbb{F}[x] & \rightarrow \mathbb{F}[x] \\
& q(x) & \mapsto & x q(x)
\end{array}
$$

(f)

$$
\begin{aligned}
& \phi: \mathbb{Z} \rightarrow \mathbb{Z} \\
& x \mapsto 2 x
\end{aligned}
$$

(g)

$$
\left.\begin{array}{rl}
\phi: \mathbb{F}[x] & \rightarrow \mathbb{F}[x] \\
& q(x)
\end{array} \mapsto q^{\prime}(x) \text { (the derivative) }\right)
$$

(h) (Note: $\mathbb{F}_{n}[x]$ was defined in problem 1 (a))

$$
\begin{aligned}
\phi: \mathbb{F}_{n}[x] & \rightarrow \mathbb{F}_{n}[x] \\
q(x) & \mapsto q^{\prime}(x) \text { (the derivative) }
\end{aligned}
$$

3. (18 pts) (Note: $\mathbb{F}_{n}[x]$ was defined in problem $1(\mathrm{a})$)
(a) Find a vector space U, such that $\mathbb{F}[x]=\mathbb{F}_{n}[x] \oplus U$ and show this holds.
(b) Give a basis and the dimension of U.
(c) Give a basis and the dimension of $\mathbb{F}[x] / \mathbb{F}_{n}[x]$.
4. Extra credit problem (20 pts) Let \mathbb{F} be a field. Then $\mathbb{F}[x]$ is a Euclidean ring with the usual division with rest. A polynomial $p(x) \in \mathbb{F}[x]$ is called irreducible over \mathbb{F} is it does not have a nontrivial factorization $p(x)=q(x) r(x), \operatorname{deg}(q), \operatorname{deg}(r)>0$. Assume $p(x) \in \mathbb{F}[x]$ is irreducible.
(a) Show that $\mathbb{F}^{\prime}=\mathbb{F}[x] / p(x)$ is a field. (Note: it is called an extension field of \mathbb{F}).
(b) Show that \mathbb{F}^{\prime} is an \mathbb{F} vector space of dimension $\operatorname{deg}(p)$. We write $\left[\mathbb{F}^{\prime}: \mathbb{F}\right]=\operatorname{deg}(p)$; it is the degree of the field extension.
(c) Give an example of a field extension \mathbb{F}^{\prime} of degree 2 for the fields $\mathbb{F}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
