18-799F Algebraic Signal Processing Theory

Spring 2007

Assignment 3

Due Date: Feb. 14th 2:30pm (at the beginning of class)

- 1. (26 pts) Which of the following are vector spaces? Show or disprove. For each vector space specify its basis and dimension, if you can.
 - (a) $\mathbb{F}_n[x] = \{\sum_{i=0}^n a_i x^i \mid a_i \in \mathbb{F}\}$ (polynomials of degree at most n) as \mathbb{F} -vector space.
 - (b) $\operatorname{GL}_n(\mathbb{R})$ as \mathbb{R} -vector space.
 - (c) $\mathbb{F}(x)$ as \mathbb{F} -vector space.
 - (d) \mathbb{C} as \mathbb{R} -vector space.
 - (e) \mathbb{R} as \mathbb{C} -vector space.
 - (f) $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ as \mathbb{Q} -vector space. Is it also a ring? A field?
 - (g) Any ideal in $\mathbb{R}[x]$ as \mathbb{R} -vector space.
 - (h) $\mathbb{R}[x]/(p(x)\mathbb{R}[x])$ as \mathbb{R} -vector space.
- 2. (56 pts) Prove which of the following are linear mappings. For each linear mapping do the following
 - specify the kernel, its dimension, and a basis
 - specify the image and its dimension
 - state whether it is injective, surjective, bijective
 - apply the homomorphism theorem
 - (a)

(b)

(c)

$$\phi: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R} \\ \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \quad \mapsto \quad \alpha_1 + \alpha_2 + \alpha_3$$

 ϕ

$$: \quad \mathbb{R}^3 \to \mathbb{R} \\ \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \mapsto \alpha_1$$

$$\begin{array}{rccc} \phi : & \mathbb{C} & \to & \mathbb{R} \\ & z & \mapsto & |z| \end{array}$$

Reminder: for any $z \in \mathbb{C}$: $z = |z|e^{\sqrt{-1}\arg z}$. (d)

 $\begin{array}{cccc} \phi: & \mathbb{C} & \to & \mathbb{R} \\ & z & \mapsto & \arg z \end{array} \\ (e) & & & & \\ \phi: & & \mathbb{F}[x] & \to & \mathbb{F}[x] \\ & & & & & \\ q(x) & \mapsto & xq(x) \end{array} \\ (f) & & & & \\ \phi: & & \mathbb{Z} & \to & \mathbb{Z} \\ & & & & & & \\ x & \mapsto & 2x \end{array}$

(g)

$$\begin{array}{rcl} \phi: & \mathbb{F}[x] & \to & \mathbb{F}[x] \\ & q(x) & \mapsto & q'(x) \mbox{ (the derivative)} \end{array}$$

(h) (Note: $\mathbb{F}_n[x]$ was defined in problem 1(a))

$$\begin{aligned} \phi : & \mathbb{F}_n[x] & \to & \mathbb{F}_n[x] \\ & q(x) & \mapsto & q'(x) \text{ (the derivative)} \end{aligned}$$

- 3. (18 pts) (Note: $\mathbb{F}_n[x]$ was defined in problem 1(a))
 - (a) Find a vector space U, such that $\mathbb{F}[x] = \mathbb{F}_n[x] \oplus U$ and show this holds.
 - (b) Give a basis and the dimension of U.
 - (c) Give a basis and the dimension of $\mathbb{F}[x]/\mathbb{F}_n[x]$.
- 4. Extra credit problem (20 pts) Let \mathbb{F} be a field. Then $\mathbb{F}[x]$ is a Euclidean ring with the usual division with rest. A polynomial $p(x) \in \mathbb{F}[x]$ is called irreducible over \mathbb{F} is it does not have a nontrivial factorization p(x) = q(x)r(x), $\deg(q)$, $\deg(r) > 0$. Assume $p(x) \in \mathbb{F}[x]$ is irreducible.
 - (a) Show that $\mathbb{F}' = \mathbb{F}[x]/p(x)$ is a field. (Note: it is called an extension field of \mathbb{F}).
 - (b) Show that \mathbb{F}' is an \mathbb{F} vector space of dimension $\deg(p)$. We write $[\mathbb{F}' : \mathbb{F}] = \deg(p)$; it is the degree of the field extension.
 - (c) Give an example of a field extension \mathbb{F}' of degree 2 for the fields $\mathbb{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$.