18-799F Algebraic Signal Processing Theory

Spring 2007

Assignment 2

Due Date: Feb. 7th 2:30pm (at the beginning of class)

- 1. (30 pts) Describe the structure of the following sets S with respect to addition and multiplication. Possible answers may include (but are not limited to):
 - (S, +) is a group;
 - (S, +) is a commutative group;
 - $(S, +, \cdot)$ is a ring;
 - $(S \setminus \{0\}, \cdot)$ is a group;
 - $(S \setminus \{0\}, \cdot)$ is a commutative group;
 - (S, \cdot) is a commutative group;
 - $(S, +, \cdot)$ is a field.

Only state the "most structure." Briefly explain why the set has the structure and give counterexamples to show that is has not more structure. (The comments in the parentheses make a loose connection to signal processing.)

Additional information: As you know, α_i is a zero of a polynomial f(x) if $f(\alpha_i) = 0$; in this case, if deg(f) = n and α_i , i = 1...n, are the zeros of f(x), you can write the polynomial as $f(x) = \prod_{i=0}^{n} (x - \alpha_i)$.

- (a) The set of real invertible matrices of size $n \times n$: $GL_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \text{exists } A^{-1} \in \mathbb{R}^{n \times n}\}.$
- (b) (stable IIR filters) Set of complex rational functions $S = \{\frac{p(x)}{q(x)} \mid p(x), q(x) \in \mathbb{C}[x], q(x) \neq 0, \text{ for every zero } \alpha \text{ of } q(x) : |\alpha| \leq 1\}.$
- (c) (minimum-phase filters) Set of complex rational functions $S = \{\frac{p(x)}{q(x)} \mid p(x), q(x) \in \mathbb{C}[x], q(x) \neq 0, \text{ for every zero } \alpha \text{ of } p(x) \text{ or } q(x) : |\alpha| \leq 1\}.$
- (d) (shifts) $S = \{x^n \mid n \in \mathbb{Z}\}.$
- 2. (21 pts)
 - (a) Show that

$$\phi: \mathbb{R}[x] \to \mathbb{C}, \quad p(x) \mapsto p(\sqrt{-1})$$

is a ring homomorphism.

- (b) Show that ϕ is surjective.
- (c) Determine the kernel of ϕ and apply the homomorphism theorem to $\phi.$
- 3. (14 pts) Recall that for square matrices $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A) \det(B)$ and $\det(A^{-1}) = \det(A)^{-1}$ (provided A is invertible).

Let $SL_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid det(A) = 1\}$. Show that

- (a) $(SL_n(\mathbb{R}), \cdot) \trianglelefteq (GL_n(\mathbb{R}), \cdot).$
- (b) $(GL_n(\mathbb{R})/SL_n(\mathbb{R}), \cdot) \simeq (\mathbb{R} \setminus \{0\}, \cdot)$. (Hint: define a suitable homomorphism and apply the homomorphism theorem).
- 4. (35 pts) In the class we asserted that $\mathbb{C}[x]$ is a Euclidean ring with respect to the usual polynomial division with rest and $\delta = \deg$ (the degree, defined as $\deg(\sum_{i=0}^{n} a_i x^i) = n$.
 - (a) Determine $\mathbb{C}[x]^{\times}$.

- (b) Find $gcd(x^3 x^2 + 2x 2, x^2 1)$ using the Euclidean algorithm. Write $(x^3 x^2 + 2x 2)\mathbb{C}[x] + (x^2 1)\mathbb{C}[x]$ as a principal ideal.
- (c) Explain why $\mathbb{C}[x]/p(x)\mathbb{C}[x]$ is a ring with respect to addition and multiplication for any $p(x) \in \mathbb{C}[x]$.
- (d) Recall that we can write $\mathbb{Z}/n\mathbb{Z} = \{[0], \ldots, [n-1]\}$ simply as the set $\{0, \ldots, n-1\}$ with addition and multiplication *mod* n. Similarly, we can view $\mathbb{C}[x]/p(x)\mathbb{C}[x]$ as the set of polynomials $\{q(x) \in \mathbb{C}[x] \mid deg(q) < deg(p)\}$ with addition and multiplication performed *mod* p(x).
 - (i) Compute x^i (for $i \ge 0$) in $\mathbb{C}[x]/((x^4 1)\mathbb{C}[x])$.
 - (ii) Describe $(\mathbb{C}[x]/(x^4-1)\mathbb{C}[x])^{\times}$. What can you say about the zeros of its elements?

5. Extra credit problem (20 pts)

- (a) Consider rings $(R_1, +, \cdot), \ldots, (R_n, +, \cdot)$. Show that their Cartesian product $R = R_1 \times \cdots \times R_n = \{(a_1, \ldots, a_n) \mid a_i \in R_i\}$ is also a ring with respect to component-wise addition and multiplication. What are its neutral elements with respect to addition and multiplication (i.e. its zero and one)?
- (b) Consider $p(x) = \prod_{i=1}^{n} (x \alpha_i) \in \mathbb{C}[x]$ with pairwise distinctive zeros (i.e. $i \neq j \Rightarrow \alpha_i \neq \alpha_j$). Prove that the mapping

$$\phi: \quad \mathbb{C}[x]/(p(x)\mathbb{C}[x]) \quad \to \quad \mathbb{C}[x]/(x-\alpha_1)\mathbb{C}[x] \times \cdots \times \mathbb{C}[x]/(x-\alpha_n)\mathbb{C}[x]$$
$$q(x) \quad \mapsto \quad (q(\alpha_1), \dots, q(\alpha_n))$$

is a ring isomorphism. This fact is known as Chinese Remainder Theorem.