18-799F Algebraic Signal Processing Theory

Spring 2007
Assignment 2
Due Date: Feb. 7th 2:30pm (at the beginning of class)

1. (30 pts) Describe the structure of the following sets S with respect to addition and multiplication. Possible answers may include (but are not limited to):

- $(S,+)$ is a group;
- $(S,+)$ is a commutative group;
- $(S,+, \cdot)$ is a ring;
- $(S \backslash\{0\}, \cdot)$ is a group;
- $(S \backslash\{0\}, \cdot)$ is a commutative group;
- (S, \cdot) is a commutative group;
- $(S,+, \cdot)$ is a field.

Only state the "most structure." Briefly explain why the set has the structure and give counterexamples to show that is has not more structure. (The comments in the parentheses make a loose connection to signal processing.)
Additional information: As you know, α_{i} is a zero of a polynomial $f(x)$ if $f\left(\alpha_{i}\right)=0$; in this case, if $\operatorname{deg}(f)=n$ and $\alpha_{i}, \quad i=1 \ldots n$, are the zeros of $f(x)$, you can write the polynomial as $f(x)=$ $\prod_{i=0}^{n}\left(x-\alpha_{i}\right)$.
(a) The set of real invertible matrices of size $n \times n: G L_{n}(\mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid\right.$ exists $\left.A^{-1} \in \mathbb{R}^{n \times n}\right\}$.
(b) (stable IIR filters) Set of complex rational functions $S=\left\{\left.\frac{p(x)}{q(x)} \right\rvert\, p(x), q(x) \in \mathbb{C}[x], q(x) \neq\right.$ 0 , for every zero α of $q(x):|\alpha| \leq 1\}$.
(c) (minimum-phase filters) Set of complex rational functions $S=\left\{\left.\frac{p(x)}{q(x)} \right\rvert\, p(x), q(x) \in \mathbb{C}[x], q(x) \neq\right.$ 0 , for every zero α of $p(x)$ or $q(x):|\alpha| \leq 1\}$.
(d) (shifts) $S=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$.
2. (21 pts)
(a) Show that

$$
\phi: \mathbb{R}[x] \rightarrow \mathbb{C}, \quad p(x) \mapsto p(\sqrt{-1})
$$

is a ring homomorphism.
(b) Show that ϕ is surjective.
(c) Determine the kernel of ϕ and apply the homomorphism theorem to ϕ.
3. (14 pts) Recall that for square matrices $A, B \in \mathbb{R}^{n \times n}, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{-1}\right)=$ $\operatorname{det}(A)^{-1}$ (provided A is invertible).
Let $S L_{n}(\mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=1\right\}$. Show that
(a) $\left(S L_{n}(\mathbb{R}), \cdot\right) \unlhd\left(G L_{n}(\mathbb{R}), \cdot\right)$.
(b) $\left(G L_{n}(\mathbb{R}) / S L_{n}(\mathbb{R}), \cdot\right) \simeq(\mathbb{R} \backslash\{0\}, \cdot)$. (Hint: define a suitable homomophism and apply the homomorphism theorem).
4. (35 pts) In the class we asserted that $\mathbb{C}[x]$ is a Euclidean ring with respect to the usual polynomial division with rest and $\delta=\operatorname{deg}$ (the degree, defined as $\operatorname{deg}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=n$.
(a) Determine $\mathbb{C}[x]^{\times}$.
(b) Find $\operatorname{gcd}\left(x^{3}-x^{2}+2 x-2, x^{2}-1\right)$ using the Euclidean algorithm. Write $\left(x^{3}-x^{2}+2 x-2\right) \mathbb{C}[x]+$ $\left(x^{2}-1\right) \mathbb{C}[x]$ as a principal ideal.
(c) Explain why $\mathbb{C}[x] / p(x) \mathbb{C}[x]$ is a ring with respect to addition and multiplication for any $p(x) \in \mathbb{C}[x]$.
(d) Recall that we can write $\mathbb{Z} / n \mathbb{Z}=\{[0], \ldots,[n-1]\}$ simply as the set $\{0, \ldots, n-1\}$ with addition and multiplication $\bmod n$. Similarly, we can view $\mathbb{C}[x] / p(x) \mathbb{C}[x]$ as the set of polynomials $\{q(x) \in$ $\mathbb{C}[x] \mid \operatorname{deg}(q)<\operatorname{deg}(p)\}$ with addition and multiplication performed $\bmod p(x)$.
(i) Compute $x^{i}($ for $i \geq 0)$ in $\mathbb{C}[x] /\left(\left(x^{4}-1\right) \mathbb{C}[x]\right)$.
(ii) Describe $\left(\mathbb{C}[x] /\left(x^{4}-1\right) \mathbb{C}[x]\right)^{\times}$. What can you say about the zeros of its elements?
5. Extra credit problem (20 pts)
(a) Consider rings $\left(R_{1},+, \cdot\right), \ldots,\left(R_{n},+, \cdot\right)$. Show that their Cartesian product $R=R_{1} \times \cdots \times R_{n}=$ $\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in R_{i}\right\}$ is also a ring with respect to component-wise addition and multiplication. What are its neutral elements with respect to addition and multiplication (i.e. its zero and one)?
(b) Consider $p(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in \mathbb{C}[x]$ with pairwise distinctive zeros (i.e. $i \neq j \Rightarrow \alpha_{i} \neq \alpha_{j}$). Prove that the mapping

$$
\begin{aligned}
\phi: \mathbb{C}[x] /(p(x) \mathbb{C}[x]) & \rightarrow \mathbb{C}[x] /\left(x-\alpha_{1}\right) \mathbb{C}[x] \times \cdots \times \mathbb{C}[x] /\left(x-\alpha_{n}\right) \mathbb{C}[x] \\
q(x) & \mapsto\left(q\left(\alpha_{1}\right), \ldots, q\left(\alpha_{n}\right)\right)
\end{aligned}
$$

is a ring isomorphism. This fact is known as Chinese Remainder Theorem.

