## 18-799F Algebraic Signal Processing Theory

Spring 2007

Assignment 1

Due Date: Jan. 31st 2:30pm (at the beginning of class)

1. (15 pts) Let  $C_6 = \langle x \mid x^6 = 1 \rangle$  be the cyclic group of order 6.

- (a) Determine all subgroups (including the trivial ones  $\langle 1 \rangle$  and  $C_6$ ) of  $C_6$ .
- (b) For each subgroup, determine the minimum set of generators.
- (c) Express each subgroup using generators and relations.
- 2. (12 pts) The function  $\cos : \mathbb{R} \to [-1, 1]$  induces the following equivalence relation on  $\mathbb{R}$ :

 $x \sim y \Leftrightarrow \cos x = \cos y.$ 

- (a) Determine the partition  $\mathbb{R}/\cos \mathfrak{of} \mathbb{R}$  induced by  $\cos$ .
- (b) Determine the canonical factorization of cos and draw the associated commutative diagram.
- 3. (17 pts) Which of the following is well-defined (give a counterexample or prove)?
  - (a) The operation  $[x] \cdot [y] = [xy]$  on  $\mathbb{Z}/n\mathbb{Z}$ . Is  $(\mathbb{Z}/n\mathbb{Z}, \cdot)$  a group? Explain your answer.
  - (b) The function

$$\begin{array}{rcccc} f\colon & \mathbb{Z}/n\mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ & & [x] & \mapsto & [x^2] \end{array}$$

(c) The function

$$\begin{array}{rcccc} f \colon & \mathbb{Z}/n\mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ & & [x] & \mapsto & [x+1] \end{array}$$

- 4. (10 pts) Consider the set of all rational numbers (excluding zero) with multiplication:  $(\mathbb{Q} \setminus \{0\}, \cdot)$ .
  - (a) Show that  $(\mathbb{Q} \setminus \{0\}, \cdot)$  is a group.
  - (b) What are the generators of this group? Explain your answer.
- 5. (20 pts) Consider the dihedral group of order 8:  $D_8 = \langle x, y \mid x^4 = y^2 = 1, xy = yx^{-1} \rangle$ . As we discussed in the class, this is the group of symmetries of a square (x is a 90-degree rotation, and y is a reflection.) Obviously, one of its subgroups is a cyclic group of order 4:  $C_4 = \langle x \mid x^4 = 1 \rangle \leq D_8$ .
  - (a) What is the index of  $C_4$  in  $D_8$ ?
  - (b) Express  $D_8$  as a union of left cosets of  $C_4$ .
  - (c) What are the elements of  $D_8$  (expressed in x and y)?
  - (d) Prove that  $C_4 \trianglelefteq D_8$ .
- 6. (15 pts)  $\mathbb{R}[x] = \{p(x) = \sum_{i=0}^{n} a_i x^i \mid n \in \mathbb{N}_0, a_i \in \mathbb{R}\}$  is the set of all polynomials with real coefficients  $(\mathbb{N}_0 = \{0, 1, \ldots\}).$

For two polynomials  $p(x), q(x) \in \mathbb{R}[x]$  we say that p(x) divides q(x) if q(x) = p(x)r(x) for some  $r(x) \in \mathbb{R}[x]$ . We write this as  $p(x) \mid q(x)$ .

(a) Let us fix some  $p(x) \in \mathbb{R}[x]$ . Prove that the following is an equivalence relation on  $\mathbb{R}[x]$ :

$$r(x) \sim s(x) \Leftrightarrow p(x) | (r(x) - s(x)).$$

(b) Consider the group  $(\mathbb{R}[x], +)$ . Find a subgroup  $H \leq \mathbb{R}[x]$ , such that for ~ defined above,

$$\mathbb{R}/\sim = \mathbb{R}[x]/H$$

and show this holds.

- (c) Is  $(\mathbb{R}[x]/H, +)$  a group? Explain your answer.
- 7. (11 pts) Let  $G = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \}.$ 
  - (a) Show that G is a group with respect to the multiplication  $\cdot$  of matrices.
  - (b) Show that

$$\begin{array}{rccc} \phi: & (\mathbb{R},+) & \to & (G,\cdot) \\ & x & \mapsto & \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \end{array}$$

is an isomorphism.

## 8. Extra credit problem (20 pts)

- (a) Let  $H \leq G$  is of index 2 in G. Prove that  $H \leq G$ .
- (b) Prove that  $C_n = \langle x \mid x^n = 1 \rangle$  does not have non-trivial subgroups if and only if n is prime. Note: This shows that  $C_p$ , p prime, are *simple* groups, the only abelian ones in fact.