18-799F Algebraic Signal Processing Theory

Spring 2007
Assignment 1
Due Date: Jan. 31st 2:30pm (at the beginning of class)

1. (15 pts) Let $C_{6}=\left\langle x \mid x^{6}=1\right\rangle$ be the cyclic group of order 6 .
(a) Determine all subgroups (including the trivial ones $\langle 1\rangle$ and C_{6}) of C_{6}.
(b) For each subgroup, determine the minimum set of generators.
(c) Express each subgroup using generators and relations.
2. (12 pts) The function $\cos : \mathbb{R} \rightarrow[-1,1]$ induces the following equivalence relation on \mathbb{R} :

$$
x \sim y \Leftrightarrow \cos x=\cos y .
$$

(a) Determine the partition \mathbb{R} / \cos of \mathbb{R} induced by cos.
(b) Determine the canonical factorization of cos and draw the associated commutative diagram.
3. (17 pts) Which of the following is well-defined (give a counterexample or prove)?
(a) The operation $[x] \cdot[y]=[x y]$ on $\mathbb{Z} / n \mathbb{Z}$. Is $(\mathbb{Z} / n \mathbb{Z}, \cdot)$ a group? Explain your answer.
(b) The function

$$
\begin{array}{rlll}
f: \quad \mathbb{Z} / n \mathbb{Z} & \rightarrow & \mathbb{Z} / n \mathbb{Z} \\
{[x]} & \mapsto & {\left[x^{2}\right]}
\end{array}
$$

(c) The function

$$
\begin{array}{rlll}
f: & \mathbb{Z} / n \mathbb{Z} & \rightarrow & \mathbb{Z} / n \mathbb{Z} \\
& {[x]} & \mapsto & {[x+1]}
\end{array}
$$

4. (10 pts) Consider the set of all rational numbers (excluding zero) with multiplication: $(\mathbb{Q} \backslash\{0\}, \cdot)$.
(a) Show that $(\mathbb{Q} \backslash\{0\}, \cdot)$ is a group.
(b) What are the generators of this group? Explain your answer.
5. (20 pts) Consider the dihedral group of order 8: $D_{8}=\left\langle x, y \mid x^{4}=y^{2}=1, x y=y x^{-1}\right\rangle$. As we discussed in the class, this is the group of symmetries of a square (x is a 90-degree rotation, and y is a reflection.) Obviously, one of its subgroups is a cyclic group of order 4: $C_{4}=\left\langle x \mid x^{4}=1\right\rangle \leq D_{8}$.
(a) What is the index of C_{4} in D_{8} ?
(b) Express D_{8} as a union of left cosets of C_{4}.
(c) What are the elements of D_{8} (expressed in x and y)?
(d) Prove that $C_{4} \unlhd D_{8}$.
6. (15 pts) $\mathbb{R}[x]=\left\{p(x)=\sum_{i=0}^{n} a_{i} x^{i} \mid n \in \mathbb{N}_{0}, a_{i} \in \mathbb{R}\right\}$ is the set of all polynomials with real coefficients $\left(\mathbb{N}_{0}=\{0,1, \ldots\}\right)$.
For two polynomials $p(x), q(x) \in \mathbb{R}[x]$ we say that $p(x)$ divides $q(x)$ if $q(x)=p(x) r(x)$ for some $r(x) \in \mathbb{R}[x]$. We write this as $p(x) \mid q(x)$.
(a) Let us fix some $p(x) \in \mathbb{R}[x]$. Prove that the following is an equivalence relation on $\mathbb{R}[x]$:

$$
r(x) \sim s(x) \Leftrightarrow p(x) \mid(r(x)-s(x))
$$

(b) Consider the group $(\mathbb{R}[x],+)$. Find a subgroup $H \leq \mathbb{R}[x]$, such that for \sim defined above,

$$
\mathbb{R} / \sim=\mathbb{R}[x] / H
$$

and show this holds.
(c) Is $(\mathbb{R}[x] / H,+)$ a group? Explain your answer.
7. (11 pts) Let $G=\left\{\left.\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}$.
(a) Show that G is a group with respect to the multiplication • of matrices.
(b) Show that

$$
\left.\begin{array}{rl}
\phi: \quad(\mathbb{R},+) & \rightarrow(G, \cdot) \\
x & \mapsto
\end{array} \begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) .
$$

is an isomorphism.
8. Extra credit problem (20 pts)
(a) Let $H \leq G$ is of index 2 in G. Prove that $H \unlhd G$.
(b) Prove that $C_{n}=\left\langle x \mid x^{n}=1\right\rangle$ does not have non-trivial subgroups if and only if n is prime. Note: This shows that C_{p}, p prime, are simple groups, the only abelian ones in fact.

