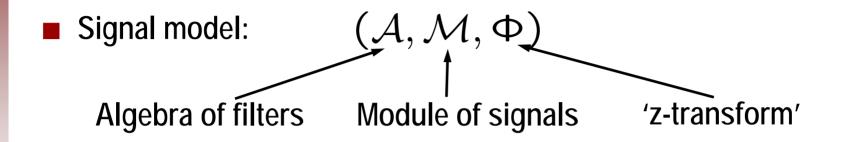
ASYMPTOTIC PROPERTIES OF TRIGONOMETRIC TRANSFORMS VIA ALGEBRAIC THEORETICAL SIGNAL MODELS

Doru Balcan and Satashu Goel Carnegie Mellon University

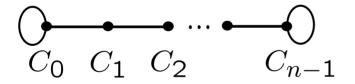
Outline

- Algebraic Signal Processing Theory
- From finite to infinite models: issue of convergence
- Termwise to normwise convergence
- Convergence using a direct approach
- Conclusion

Algebraic signal models



Space models: visualization



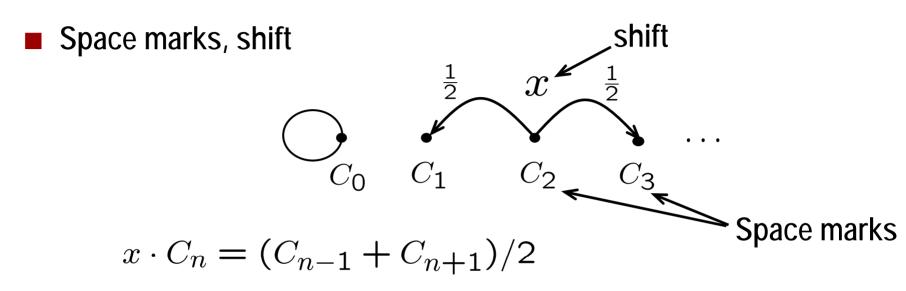
 $C_0 C_1 C_2 C_3$

Finite: left and right bc

Infinite: only left bc

■ As n → ∞, does the finite model converge to infinite model? What does convergence mean?

Definition of a signal model



Shift matrix: captures operation of shift on basis

e.g., for DTTS,
$$\phi(x) = \frac{1}{2} \cdot \begin{bmatrix} \beta_1 & 1 & & & \\ \beta_2 & 0 & 1 & & \\ & 1 & 0 & \cdot & \\ & & 1 & \cdot & 1 \\ & & & & 1 & \cdot & 1 \\ & & & & & 0 & \beta_3 \\ & & & & & & 1 & \beta_4 \end{bmatrix}$$

Filter matrices

If
$$h^{(n)} = \sum_{0 \le k < n} h_k x^k$$
 $\phi_n(h^{(n)}) = \sum_{0 \le k < n} h_k \phi(x^k)$

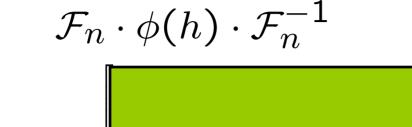
Key property: Fourier transform diagonalizes filter matrices

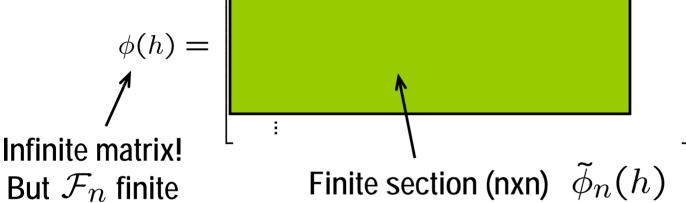
$$\mathcal{F}_n \cdot \phi_n(h^{(n)}) \cdot \mathcal{F}_n^{-1} = D$$

Finite transform applied to infinite filter matrix Key question:

$$\mathcal{F}_n \cdot \phi(h) \cdot \mathcal{F}_n^{-1} \approx D$$
 for large n?

Finite sections of an infinite matrix





Ideally, if transforms are asymptotically equivalent

$$\lim_{n \to \infty} \mathcal{F}_n \cdot \phi_n(h^{(n)}) \cdot \mathcal{F}_n^{-1} = \lim_{n \to \infty} \mathcal{F}_n \cdot \tilde{\phi}_n(h) \cdot \mathcal{F}_n^{-1}$$

Types of convergence

$$\lim_{n \to \infty} \mathcal{F}_n \cdot \phi_n(h^{(n)}) \cdot \mathcal{F}_n^{-1} = \lim_{n \to \infty} \mathcal{F}_n \cdot \tilde{\phi}_n(h) \cdot \mathcal{F}_n^{-1}$$

Is termwise convergence enough?

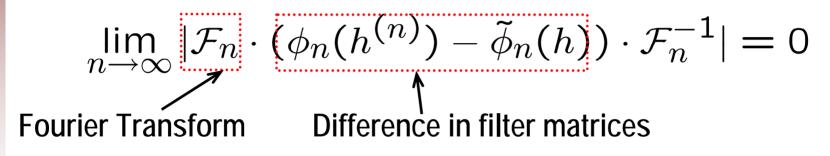
- Performance degradation is function of weak norm
- For matrix $\mathbf{A} = (a_{ij})$, weak norm is defined as $|\mathbf{A}|^2 = \frac{1}{N} \sum_{i,j=0}^{N} |a_{ij}|^2 = \frac{1}{N} ||\mathbf{A}||_F^2$

Example:
$$a_{ij} = 1/\sqrt[4]{N}$$

- Termwise: $\mathbf{A} \rightarrow \mathbf{0}$
- Normwise: $|\mathbf{A}|_N \to \infty$ $(|\mathbf{A}|_N^2 = \sqrt{N})$

Normwise Convergence

Modify criterion: use weak norm



Outline

- Algebraic Signal Processing Theory
- From finite to infinite models: issue of convergence
- Termwise to normwise convergence
- Convergence using a direct approach

Conclusion

Termwise to normwise convergence

$$\alpha_{ij}^N \doteq [\mathbf{C}_N^H \mathbf{D}_N \mathbf{C}_N]_{kj} \qquad \alpha_{ij} \doteq \int_X P_k(x) P_j(x) f(x) d\mu(x)$$

Given:

Termwise convergence

$$\alpha_{ij}^N \xrightarrow[N \to \infty]{} \alpha_{ij}$$

- Decay of "Fourier coefficients" $lpha_{ij}
ightarrow 0, \quad i
ightarrow \infty$ or $j
ightarrow \infty$

To show:

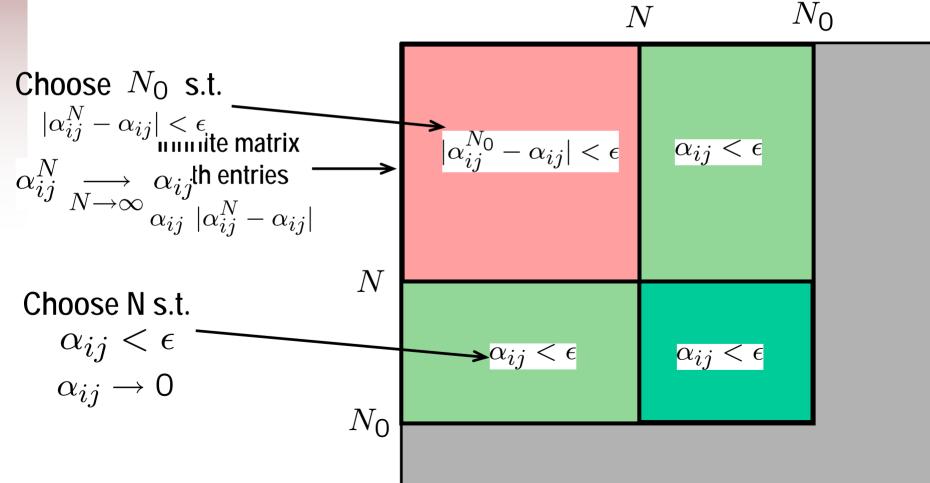
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i,j=0}^{N-1} |\alpha_{ij}^{N} - \alpha_{ij}|^{2} = 0$$

Equivalently:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i,j=0}^{N-1} \alpha_{ij} |\alpha_{ij}^N - \alpha_{ij}| = 0$$

Key intuition for proof

• α_{ij} and $(\alpha_{ij}^{N_0} - \alpha_{ij})$ can be bounded separately, in different regions



Outline

- Algebraic Signal Processing Theory
- From finite to infinite models: issue of convergence
- Termwise to normwise convergence
- Convergence using a direct approach

Conclusion

New Question

Q: Can we approximate <u>infinite signal models</u> by related, <u>finite signal models</u>?

A: In what sense?

Modify criterion: use weak norm

$$\lim_{n \to \infty} |\mathcal{F}_n \cdot (\phi_n(h^{(n)}) - \tilde{\phi}_n(h)) \cdot \mathcal{F}_n^{-1}| = 0$$

Fourier Transform Difference in filter matrices

Carnegie Mellon •"smoothness": $\sum_{k \in \mathbb{N}} (k+1)h_k^2 < \infty$ •stronger than L_2 •neither stronger, nor weaker than L_1 **Theorem** Let $(\mathcal{A}, \mathcal{M}, \Phi)$ be the space sign model corresponding to the infinite C-transform, and $h \in \mathcal{A}^s$. For $n < \infty$, let $(\mathcal{A}_n, \mathcal{M}_n, \Phi_n)$ be the signal model corresponding to related finite C-transform, and $h^{(n)} \in \mathcal{A}_n$ be the "*n*-prefix" of \boldsymbol{h} .

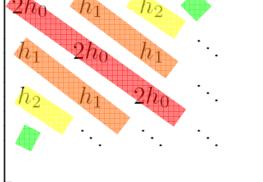
Then,

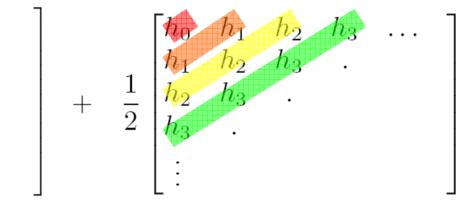
$$| ilde{\phi}_n(h) - \phi_n(h^{(n)})| o 0.$$

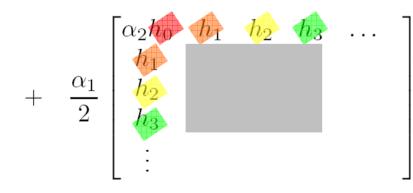
Filter matrix (infinite)

example: T-transform

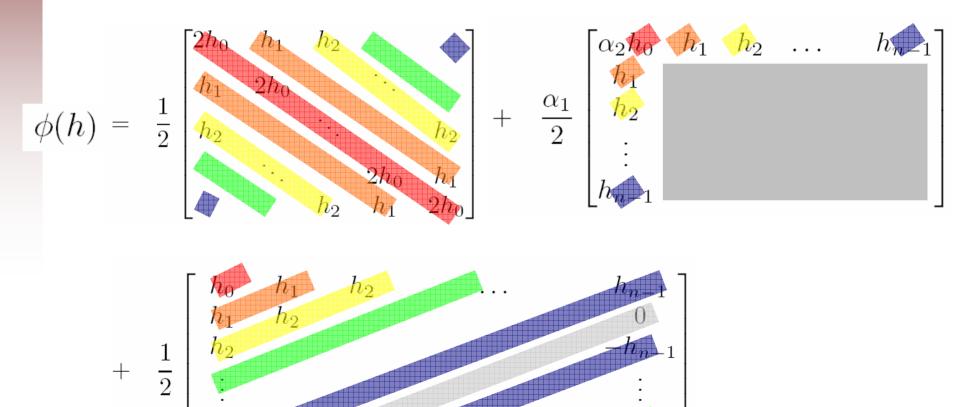
 $\phi(h) = \frac{1}{2} \begin{vmatrix} h_1 \\ h_2 \\ h_2 \end{vmatrix}$







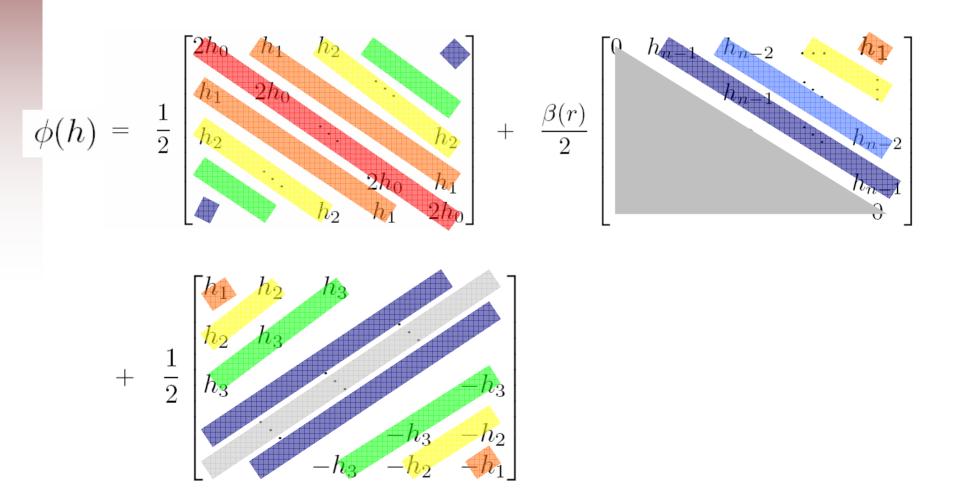
Filter matrix (finite) example: DCT-3



 $-h_2$

 $-h_n$

Filter matrix (skew) example: DCT-4(*r*)



Outline

- Algebraic Signal Processing Theory
- From finite to infinite models: issue of convergence
- Termwise to normwise convergence
- Convergence using a direct approach

Conclusion

Conclusions

We investigated asymptotic decorrelation properties of DTTs / skew DTTs

- fixed bug in old proof
- Adopted the Algebraic Signal Processing Theoretical point of view
 - identify signal model for transform:
 - filter algebra, signal module, "z-transform", shift, b.c., etc.

New perspective:

("nice" finite models)_(n) $\xrightarrow{n \to \infty}$ infinite models

- How about models for other types of signal extension?
 - k-monomial, sparse polynomial

Thank you!