Algebraic Signal Processing Theory Markus Püschel Electrical and Computer Engineering Carnegie Mellon University

Collaborators: José Moura (ECE, CMU) Martin Rötteler (NEC, Princeton) Jelena Kovacevic (BME, CMU)

> This work was funded by NSF under awards SYS-9988296 and SYS-310941

Preliminaries

- Algebra (as used in this talk) is the theory of groups, rings, and fields
- The scope of the algebraic theory is linear signal processing (SP)
- In this talk we focus on the discrete case (infinite and finite signals)

Background papers:

- Basic theory (main paper):
 Püschel and Moura, "Algebraic Theory of Signal Processing," submitted
- Fast algorithms: Püschel and Moura, "Algebraic Theory of Signal Processing: 1-D Cooley-Tukey Type Algorithms," submitted Püschel and Moura (SIAM J. Comp 03) and earlier work (Egner and Püschel)
- New lattice transforms: Püschel and Rötteler (ICASSP '04, DSP '04, ICASSP '05, ICIP '05)
- Sampling: Kovacevic and Püschel (ICASSP '06)

Organization

Overview

The algebraic structure underlying linear signal processing

From shift to signal model: Time and space

From infinite to finite signal models

Fast algorithms

Conclusions

The Basic Idea

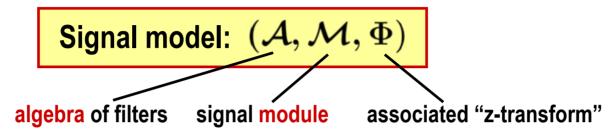
 SP is built around the key concepts: signals, filters (convolution), z-transform, spectrum, Fourier transform

	infinite time	finite time	infinite space	finite space	other models	generic case
	z-transform	finite z-transform	C-transform	finite C-transform	lattice	Φ
set of signals	Laurent series in z ⁻ⁿ	polynomials in z ⁻ⁿ	series in C _n	polynomials in C _n ?	e-variant /quincunx	\mathcal{M}
set of filters	Laurent series in z ⁻ⁿ	polynomials in z ⁻ⁿ	series in T _n	polynomials in T _n	next neighbor time-variant spatial hexagonal/quincunx and others	${\cal A}$
Fourier transform	DTFT	DFT	DSFT?	DCTs/DSTs	next neighbo spatial hexag and others	${\cal F}$
						dervatio

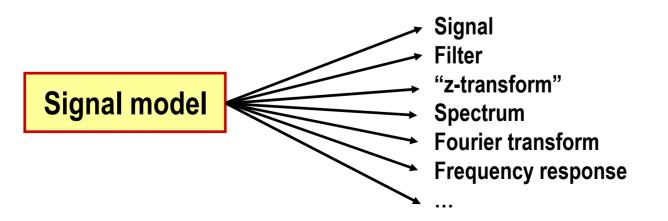
Algebraic theory: All are instantiations of the same theory

The Basic Idea (cont'd)

Key concept in the algebraic theory:



- Infinite and finite time and infinite and finite space are signal models
- But many others are possible
- Once the signal model is defined, all other concepts follow



Why Algebraic Theory?

Identifies the filtering (convolution), "z-transform," spectrum, etc., that goes with the DCTs/DSTs and other existing transforms

Explains boundary conditions for finite signal models

• E.g., why periodic for DFT and symmetric for the DCTs.

New signal models beyond time

- Space
- Space in higher dimension (nonseparable hexagonal lattice, quincunx lattice)

A comprehensive theory of fast transform algorithms

- Current state: Hundreds of publications, but ...
- Algebraic theory: Concise derivation, classification, reason for existence, many new fast algorithms found for DCTs/DSTs and new lattice transforms

What we are <u>Not</u> Trying to do

Restate existing knowledge in a more complicated way

Do math for the math's sake

Provide a theory that is purely "descriptive," i.e., cannot be applied

The algebraic theory is "operational:"

- Enables the derivation of new signal models
- Enables the derivation of new fast algorithms for existing and new transforms

Organization

Overview

■ The algebraic structure underlying linear signal processing

From shift to signal model: Time and space

From infinite to finite signal models

Fast algorithms

Conclusions

The Algebraic Structure of Signal and Filter Space

Signal space, available operations:

- signal + signal = signal
- $\alpha \cdot \text{signal} = \text{signal}$

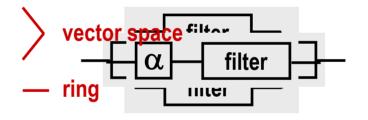
Filter space, available operations:

- filter + filter = filter
- $\alpha \cdot \text{filter} = \text{filter}$
- filter filter = filter

Filters operate on signals:

filter • signal = signal


```
Set of filters = an algebra \mathcal{A}
Set of signals = an \mathcal{A}-module \mathcal{M}
```



(Algebraic) Signal Model

Signals arise as sequences of numbers $(s_n)_{n \in I} \in \mathbb{C} \times \mathbb{C} \times \cdots = \mathbb{C}^I$

- To obtain a notion of filtering, Fourier transform, etc., one needs to assign module and algebra
- Example: infinite discrete time: $(s_n)_{n \in \mathbb{Z}}$ z-transform: Φ : $(s_n)_{n \in \mathbb{Z}} \mapsto \sum s_n z^{-n} \in \mathcal{M}$ $\mathcal{M} = \{\sum s_n z^{-n}\}, \quad \mathcal{A} = \{\sum h_k z^{-k}\}$ signal model

Signal model (definition): $(\mathcal{A}, \mathcal{M}, \Phi)$

${\cal A}$	algebra of filters
${\mathcal M}$	an ${\mathcal A}$ -module of signals
Φ	linear mapping $\mathbb{C}^I o \mathcal{M}$

Algebras Occurring in SP: Shift-Invariance

What is the shift?

- A special filter x (= z^{-1}) = an element of A
- Filters expressible as polynomials/series in x

shift(s) = generator(s) of \mathcal{A}

Shift-invariance $x \cdot h = h \cdot x$ for all $h \in \mathcal{A}$

signal model $(\mathcal{A}, \mathcal{M}, \Phi)$ is shift-invariant $\Leftrightarrow \mathcal{A}$ is commutative

Shift-invariant + finite-dimensional (+ one shift only):

 $\mathcal{A} = \mathbb{C}[x]/p(x)$ polynomial algebra

Example: Finite Time Model and DFT

Finite signals: $(s_0, \ldots, s_{n-1}) \quad \dim(\mathcal{M}), \dim(\mathcal{A}) < \infty$

Signal model: $\mathcal{A} = \mathcal{M} = \mathbb{C}[x]/(x^n - 1)$ $h(x) = \sum_{k=0}^{n-1} h_k x^k \in \mathcal{A}, \quad s(x) = \sum_{i=0}^{n-1} s_i x^i \in \mathcal{M}$ $h(x) \cdot s(x) \mod (x^n - 1)$ Filtering = cyclic convolution $\Phi: (s_0, \dots, s_{n-1}) \mapsto s(x) = \sum s_i x^i \in \mathcal{M}$ Finite z-transform

Spectrum and Fourier transform from Chinese remainder theorem $\mathcal{F}: \mathbb{C}[x]/(x^n-1) \rightarrow \mathbb{C}[x]/(x-\omega_n^0) \oplus \ldots \oplus \mathbb{C}[x]/(x-\omega_n^{n-1})$ $s(x) \mapsto (s(\omega_n^0), \ldots, s(\omega_n^{n-1}))$

Summary so far

Signal model $(\mathcal{A}, \mathcal{M}, \Phi)$

Shift-invariance: *A* is commutative

• in addition finite makes \mathcal{A} a polynomial algebra

Infinite and finite time are special cases of signal models

How to go beyond time?

Answer: Derivation of signal model from shift

shift signal model
$$(\mathcal{A}, \mathcal{M}, \Phi)$$

Organization

Overview

The algebraic structure underlying linear signal processing

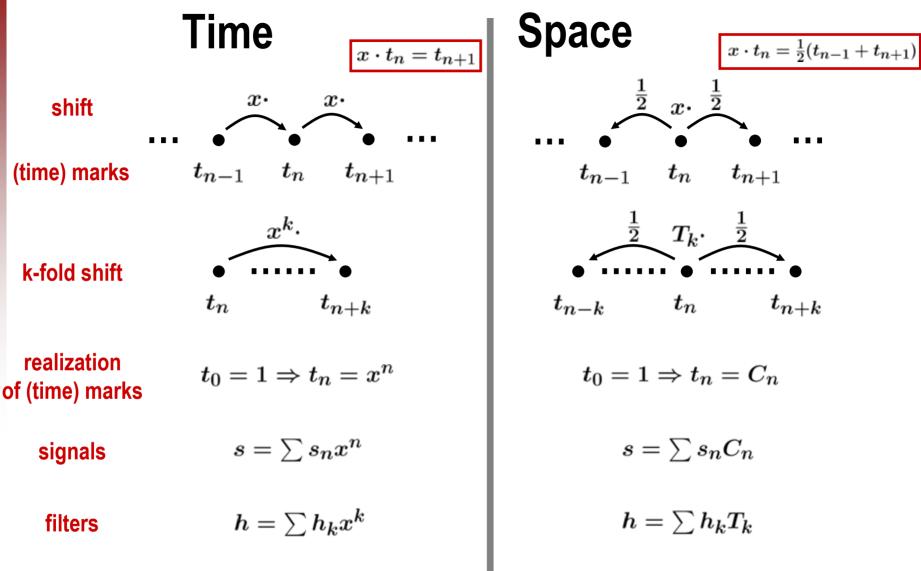
From shift to signal model: Time and space

- From infinite to finite signal models
- Fast algorithms

Conclusions

. . .

 t_{n+k}

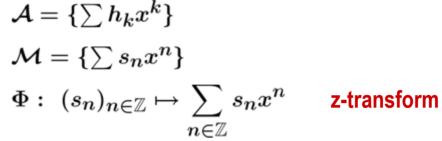


Chebyshev polynomials

Operation of filters on signals is automatically defined (the linear extension of the shift operation)

Time and Space (cont'd)

Time: we are done $\mathcal{M} = \{\sum s_n x^n\}$



Chebyshev polynomials

Space:

$$\mathcal{A} = \{ \sum h_k T_k \}$$

$$\mathcal{M} = \{ \sum s_n C_n \}$$
but:
each a linear combination
of C_n, n \ge 0
$$\mathcal{A} = \{ \sum h_k T_k \}$$

$$\mathcal{M} = \{ \sum s_n C_n \}$$

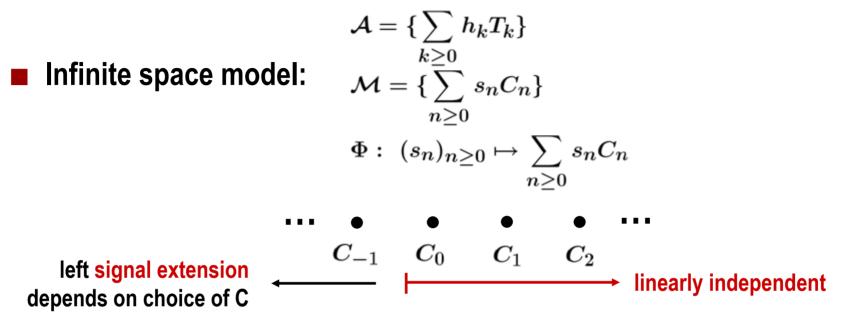
$$\mathcal{M} = \{ \sum c_n C_n \}$$

Signal model only for right-sided sequences:

$$\Phi: (s_n)_{n\geq 0}\mapsto \sum_{n\geq 0}s_nC_n$$
 C-transform

Left Signal Extension

Chebyshev polynomials



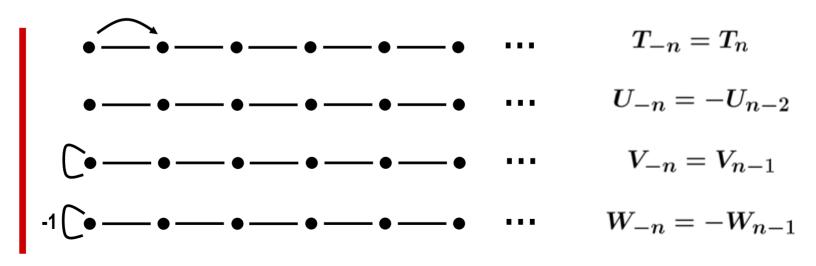
Simplest signal extension: monomial $C_{-n} = aC_k$

Monomial if and only if $C \in \{T, U, V, W\}$

Visualization

Infinite discrete time (z-transform)

Infinite discrete space (C-transform, C=T,U,V,W)



left boundary

Organization

Overview

The algebraic structure underlying linear signal processing

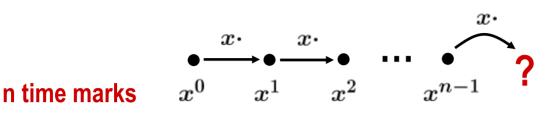
From shift to signal model: Time and space

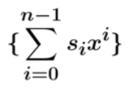
From infinite to finite signal models

Fast algorithms

Conclusions

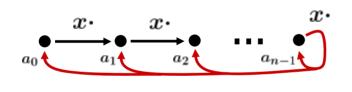
Derivation: Finite Time Model





 not closed under shift no module

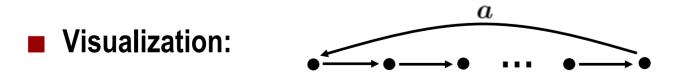
Solution: Right boundary condition



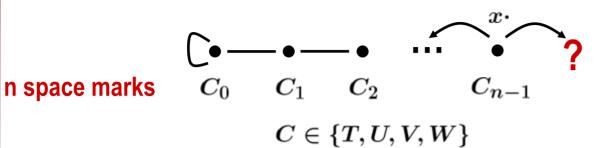
$$egin{aligned} &x^n = a_{n-1}x^{n-1} + \cdots + a_0x^0\ &\Rightarrow &p(x) = x^n - a_{n-1}x^{n-1} - \cdots - a_0x^0 = 0\ &&\mathcal{M} = \mathcal{A} = \mathbb{C}[x]/p(x) \end{aligned}$$

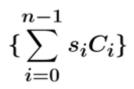
Monomial signal extension: $p(x) = x^n - a, \quad a \neq 0$ (a = 1: finite z-transform)

periodic



Derivation: <u>Finite</u> Space Model





not closed under shiftno module

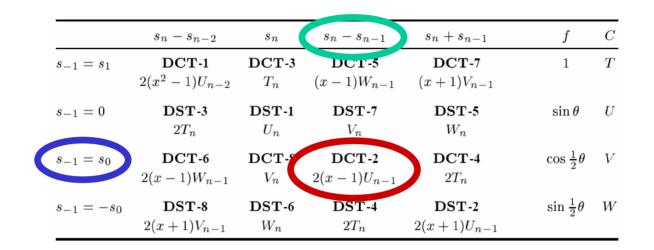
Monomial signal extension: For each $C \in \{T, U, V, W\}$ four cases

$$C_n = C_{n-2}$$

 $C_n = 0$
 $C_n = C_{n-1}$
 $C_n = -C_{n-1}$

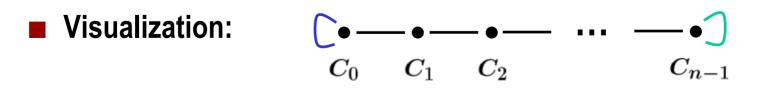
■ 16 finite space models ⇔ 16 DCTs/DSTs as Fourier transforms

16 Finite Space Models



Example: Signal model for DCT, type 2:

$$\begin{split} \mathcal{A} &= \mathbb{C}[x]/2(x-1)U_{n-1} = \{\sum_{k=0}^{n-1} h_k T_k\} \\ \mathcal{M} &= \mathbb{C}[x]/2(x-1)U_{n-1} = \{\sum_{i=0}^{n-1} s_i V_i\} \end{split} \quad \Phi: \ (s_i)_{0 \leq i < n} \mapsto \sum_{i=0}^{n-1} s_i V_i \end{split}$$



Time (complex):	complex finite z-transform			Section VI-B	
Φ	\mathcal{M}	\mathcal{A}	$\mathcal{F} = \mathcal{P}_{b,\alpha}$	other \mathcal{F}	
$\mapsto \sum s_k x^k$	$\mathbb{C}[x]/(x^n-a)$	regular	$DFT_n \cdot D$		
	$\mathbb{C}[x]/(x^n-1)$	regular	$DFT_n = DFT-1_n$	$DFT-2_n$	
	$\mathbb{C}[x]/(x^n+1)$	regular	$DFT-3_n$	$DFT-4_n$	
		-			
l'ime (real): real	finite z-transform			Section VI-G	
Þ	\mathcal{M}	\mathcal{A}	$\mathcal{F} = \mathcal{P}_{b,\alpha}$	other \mathcal{F}	
$\mathbf{s}\mapsto \sum s_k x^k$	$\mathbb{R}[x]/(x^n-1)$	regular	n.a.	$RDFT_n = RDFT-1_n$	
	$\mathbb{R}[x]/(x^n-1)$	regular	n.a.	$RDFT-2_n$	
	$\mathbb{R}[x]/(x^n-1)$	regular	n.a.	$DHT_n = DHT \cdot l_n (DWT \cdot l_n)$	
	$\mathbb{R}[x]/(x^n-1)$	regular	n.a.	DHT- 2_n (DWT- 2_n)	
	$\mathbb{R}[x]/(x^n+1)$	regular	n.a.	$RDFT-3_n$	
	$\mathbb{R}[x]/(x^n+1)$	regular	n.a.	$RDFT-4_n$	
	$\mathbb{R}[x]/(x^n+1)$	regular	n.a.	DHT- 3_n (DWT- 3_n)	
	$\mathbb{R}[x]/(x^n+1)$	regular	n.a.	DHT- 4_n (DWT- 4_n)	
	real): finite C-transform (C =			Sections VIII-B, IX-B, XI-B	
þ	\mathcal{M}	\mathcal{A}	$\mathcal{F} = \mathcal{P}_{b,\alpha}$	other \mathcal{F}	
$\mapsto \sum s_k T_k$	$\mathbb{C}[x]/(x^2-1)U_{n-2}$	regular	$DCT-1_n = \overline{DCT-1}_n$	—	
	$\mathbb{C}[x]/T_n$	regular	$DCT-3_n = \overline{DCT-3}_n$	—	
	$\mathbb{C}[x]/(x-1)W_{n-1}$	regular	$DCT-5_n = \overline{DCT-5}_n$	—	
	$\mathbb{C}[x]/(x+1)V_{n-1}$	regular	$DCT-7_n = \overline{DCT-7}_n$	—	
	$\mathbb{C}[x]/(T_n - \cos r\pi)$	regular	$DCT-3_n(r) = \overline{DCT-3}_n(r)$	—	
$\mapsto \sum s_k U_k$	$\mathbb{C}[x]/T_n$	regular	$\overline{\text{DST-3}}_n$	$DST-3_n$	
	$\mathbb{C}[x]/U_n$	regular	$\overline{\text{DST-1}}_n$	$DST-1_n$	
	$\mathbb{C}[x]/V_n$	regular	$\overline{\text{DCT-7}}_n$	$DCT-7_n$	
	$\mathbb{C}[x]/W_n$	regular	$\overline{\text{DST-5}}_n$	$DST-5_n$	
	$\mathbb{C}[x]/(T_n - \cos r\pi)$	regular	$\overline{\text{DST-3}}(r)_n$	$DST-3(r)_n$	
$\mapsto \sum s_k V_k$	$\mathbb{C}[x]/(x-1)W_{n-1}$	regular	$\overline{\text{DCT-6}}_n$	$DCT-6_n$	
	$\mathbb{C}[x]/V_n$	regular	$\overline{\text{DCT-8}}_n$	$DCT-8_n$	
	C[n]/(n-1)U	regular	$\overline{\text{DCT-2}}_n$	$DCT-2_n$	
	$\mathbb{C}[x]/(x-1)U_{n-1}$	regular		DOIM	
	$\mathbb{C}[x]/(x-1)U_{n-1}$ $\mathbb{C}[x]/T_n$	regular	$\overline{\text{DCT-4}}_n$	$DCT-4_n$	
		•	$\frac{\overline{\text{DCT-4}}_n}{\overline{\text{DCT-4}}(r)_n}$		
$\mapsto \sum s_k W_k$	$\mathbb{C}[x]/T_n$	regular		$DCT-4_n$	
$\mapsto \sum s_k W_k$	$ \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(T_n - \cos r\pi) $	regular regular	$\frac{\overline{\text{DCT-4}}(r)_n}{\overline{\text{DST-8}}_n}$ $\overline{\text{DST-6}}_n$	$\frac{\text{DCT-4}_n}{\text{DCT-4}(r)_n}$	
$\mapsto \sum s_k W_k$	$\mathbb{C}[x]/T_n$ $\mathbb{C}[x]/(T_n - \cos r\pi)$ $\mathbb{C}[x]/(x+1)V_{n-1}$	regular regular regular	$\frac{\overline{\text{DCT-4}}(r)_n}{\overline{\text{DST-8}}_n}$	$\frac{\text{DCT-4}_n}{\text{DCT-4}(r)_n}$ $\frac{\text{DST-8}_n}{\text{DST-8}_n}$	
$\mapsto \sum s_k W_k$	$\mathbb{C}[x]/T_n$ $\mathbb{C}[x]/(T_n - \cos r\pi)$ $\mathbb{C}[x]/(x + 1)V_{n-1}$ $\mathbb{C}[x]/W_n$	regular regular regular regular	$\frac{\overline{\text{DCT-4}}(r)_n}{\overline{\text{DST-8}}_n}$ $\overline{\text{DST-6}}_n$	$\begin{array}{c} \text{DCT-4}_n\\ \text{DCT-4}(r)_n\\ \\ \text{DST-8}_n\\ \text{DST-6}_n \end{array}$	
$\mapsto \sum s_k W_k$	$\mathbb{C}[x]/T_n$ $\mathbb{C}[x]/(T_n - \cos r\pi)$ $\mathbb{C}[x]/(x+1)V_{n-1}$ $\mathbb{C}[x]/W_n$ $\mathbb{C}[x]/T_n$	regular regular regular regular regular regular		$\begin{array}{c} \text{DCT-4}_n\\ \text{DCT-4}(r)_n\\ \\ \hline \text{DST-8}_n\\ \text{DST-6}_n\\ \text{DCT-4}_n\\ \end{array}$	
$\mapsto \sum s_k W_k$ $\mapsto \sum s_k x^k$	$ \begin{array}{c} \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(T_{n} - \cos r\pi) \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_{n} \\ \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(T_{n} - \cos r\pi) \\ \hline \\ \mathbb{C}[x]/(x^{n} - 1) \\ \end{array} $	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$	$ \overline{\frac{\text{DCT-4}(r)_n}{\text{DST-8}_n}} \frac{\text{DST-6}_n}{\text{DST-6}_n} \frac{\text{DCT-4}_n}{\text{DST-2}_n} $	$\begin{array}{c} \text{DCT-4}_n\\ \text{DCT-4}(r)_n\\ \\ \hline \text{DST-8}_n\\ \text{DST-6}_n\\ \text{DCT-4}_n\\ \text{DST-2}_n\\ \text{DST-2}_n\\ \\ \text{DST-4}(r)_n\\ \\ \hline \text{RDFT}_n = \text{RDFT-1}_n \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(T_n - \cos r\pi) \end{array} \\ \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_n \\ \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(T_n - \cos r\pi) \end{array} $	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$		$\begin{array}{c} \text{DCT-4}_n\\ \text{DCT-4}(r)_n\\ \\ \hline \text{DST-8}_n\\ \text{DST-6}_n\\ \text{DCT-4}_n\\ \\ \text{DST-2}_n\\ \\ \\ \hline \text{DST-2}_n\\ \\ \hline \text{DST-4}(r)_n\\ \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(T_{n} - \cos r\pi) \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_{n} \\ \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(T_{n} - \cos r\pi) \\ \hline \\ \mathbb{C}[x]/(x^{n} - 1) \\ \end{array} $	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{DCT-4}_n\\ \text{DCT-4}(r)_n\\ \\ \hline \text{DST-8}_n\\ \text{DST-6}_n\\ \text{DCT-4}_n\\ \text{DST-2}_n\\ \text{DST-2}_n\\ \\ \text{DST-4}(r)_n\\ \\ \hline \text{RDFT}_n = \text{RDFT-1}_n \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(T_{n} - \cos r\pi) \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_{n} \\ \mathbb{C}[x]/T_{n} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x^{n} - \cos r\pi) \\ \end{array} \\ \hline \\ \hline \\ \begin{array}{c} \mathbb{C}[x]/(x^{n} - 1) \\ \mathbb{C}[x]/(x^{n} - 1) \\ \mathbb{C}[x]/(x^{n} - 1) \\ \end{array} \\ \end{array} \\ \end{array} $	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{DCT}\text{-}4_n\\ \mathrm{DCT}\text{-}4(r)_n\\ \\ \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(T_n - \cos r\pi) \\ \end{array} \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_n \\ \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x-1) \\ \mathbb{C}[x]/(x^n-1) \\ \mathbb{C}[x]/(x^n-1) \\ \mathbb{C}[x]/(x^n-1) \\ \mathbb{C}[x]/(x^n-1) \\ \mathbb{C}[x]/(x^n-1) \\ \end{array} \\ \end{array}$	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{DCT}\textbf{-}4_n\\ \mathrm{DCT}\textbf{-}4(r)_n\\ \\ \hline \mathrm{DST}\textbf{-}8_n\\ \mathrm{DST}\textbf{-}6_n\\ \mathrm{DCT}\textbf{-}4_n\\ \mathrm{DST}\textbf{-}2_n\\ \mathrm{DST}\textbf{-}2_n\\ \mathrm{DST}\textbf{-}4(r)_n\\ \\ \hline \mathbf{RDFT}_n = \mathrm{RDFT}\textbf{-}1_n\\ \mathrm{RDFT}\textbf{-}2_n\\ \mathrm{DHT}_n = \mathrm{DHT}\textbf{-}1_n\\ \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(T_n - \cos r\pi) \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_n \\ \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x-1) \\ \mathbb{C}[x]/(x^n - 1) \\ \end{array} $	regular regular regular regular regular regular regular $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$ $\langle (x^{-1} + x)/2 \rangle$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{DCT} \textbf{-}4_n\\ \mathrm{DCT} \textbf{-}4(r)_n\\ \end{array}$ $\begin{array}{c} \mathrm{DST}\textbf{-}8_n\\ \mathrm{DST}\textbf{-}6_n\\ \mathrm{DCT}\textbf{-}4_n\\ \mathrm{DST}\textbf{-}2_n\\ \mathrm{DST}\textbf{-}2_n\\ \mathrm{DST}\textbf{-}4(r)_n\\ \end{array}$ $\begin{array}{c} \mathrm{RDFT}_n = \mathrm{RDFT}\textbf{-}1_n\\ \mathrm{RDFT}\textbf{-}2_n\\ \mathrm{DHT}_n = \mathrm{DHT}\textbf{-}1_n\\ \mathrm{DHT}\textbf{-}2_n\\ \end{array}$	
	$ \begin{array}{c} \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(T_n - \cos r\pi) \\ \end{array} \\ \hline \\ \mathbb{C}[x]/(x+1)V_{n-1} \\ \mathbb{C}[x]/W_n \\ \mathbb{C}[x]/T_n \\ \mathbb{C}[x]/(x+1)U_{n-1} \\ \mathbb{C}[x]/(x-1) \\ \mathbb{C}[x]/(x^n - 1) \\ \mathbb{C}[x]/(x^n + 1) \\ \end{array} $	$\begin{array}{c} \operatorname{regular} \\ \operatorname{regular} \\ \\ \\ \operatorname{regular} \\ \\ \\ \left\langle (x^{-1}+x)/2 \right\rangle \\ \\ \left\langle (x^{-1}+x)/2 \right\rangle \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{DCT} \textbf{-}4_n\\ \mathrm{DCT} \textbf{-}4(r)_n\\ \hline\\ \mathbf{DST} \textbf{-}8_n\\ \mathrm{DST} \textbf{-}6_n\\ \mathrm{DCT} \textbf{-}4_n\\ \mathrm{DST} \textbf{-}2_n\\ \mathrm{DST} \textbf{-}2_n\\ \mathrm{DST} \textbf{-}4(r)_n\\ \hline\\ \mathbf{RDFT}_n = \mathrm{RDFT} \textbf{-}1_n\\ \mathrm{RDFT} \textbf{-}2_n\\ \mathrm{DHT}_n = \mathrm{DHT} \textbf{-}1_n\\ \mathrm{DHT} \textbf{-}2_n\\ \mathrm{RDFT} \textbf{-}3_n\\ \end{array}$	

1D Trigonometric Transforms

 Signal models for all existing (and some newly introduced) trigonometric transforms (~30)

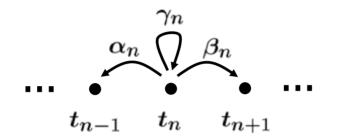
 Explains all existing trigonometric transforms

 Gives for each transform associated "z-transform" filters, etc.

source: "Algebraic Theory of Signal Processing," submitted 23

More Exotic 1-D Model

Generic next neighbor shift

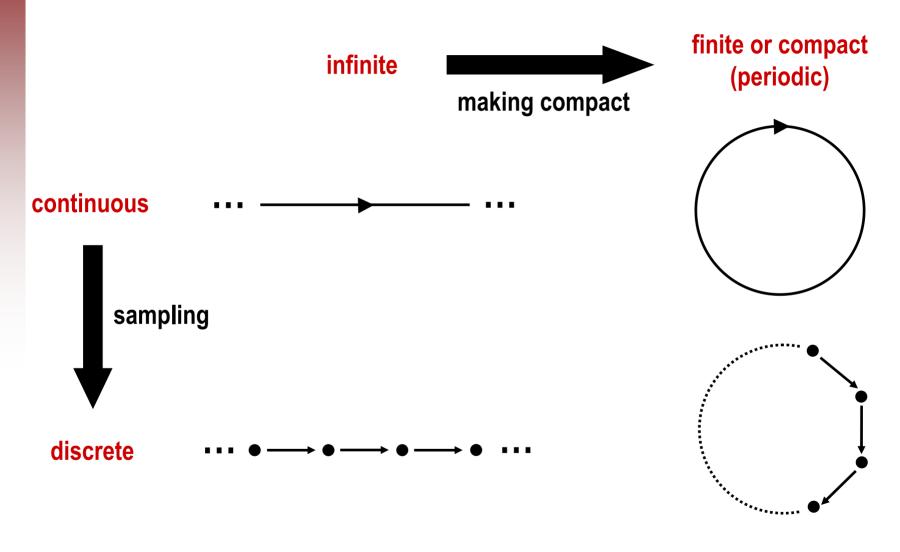


Space variant but shift invariant

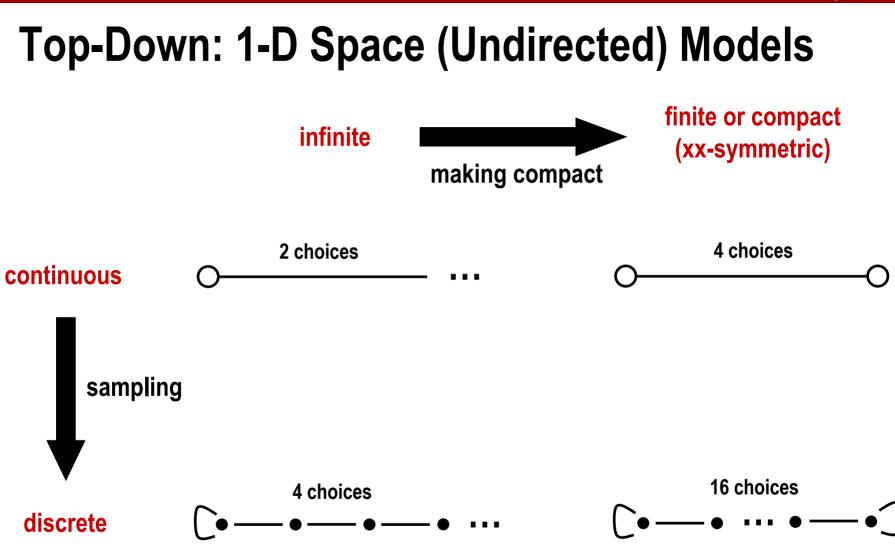
- Same procedure yields infinite and finite models
- Connects to orthogonal polynomials

Applications?

Top-Down: 1-D Time (Directed) Models



$$h\star s = \int s(au) h(t- au) d au$$



$$h \star s = \int s(\tau) \frac{1}{2} (h(t+\tau) + h(t-\tau)) d\tau$$
 26

Finite Signal Models in Two Dimensions

Visualization (without b.c.)	Signal Model $\mathcal{A}=\mathcal{M}$	Fourier Transform
time, separable	$\mathbb{C}[x,y]/\langle x^n{-}1,y^n{-}1 angle$ time shifts: x, y	$\mathrm{DFT}_n\otimes\mathrm{DFT}_n$
space, separable	for example $\mathbb{C}[x,y]/\langle T_n(x),T_n(y) angle$ space shifts: x, y	$ ext{DCT}_n \otimes ext{DCT}_n$ (16 types)

time, nonseparable	$\mathbb{C}[u,v]/\langle u^n-1,u^{rac{n}{2}}-v^{rac{n}{2}} angle$ time shifts: u, v	$ ext{DDQT}_{n imes rac{n}{2}}$ ICASSP '05 (see also Mersereau)
space, nonseparable	$\mathbb{C}[u,v,w]/\langle T_{n/2}(u),T_{n/2}(v),\ 4w^2-(u{+}1)(v{+}1) angle$ space shifts: u, v, w	$\mathrm{DQT}_{n imes rac{n}{2}}$ ICIP '05
space, nonseparable	$\mathbb{C}[x,y]/\langle C_n(x,y), \overline{C}_n(x,y) angle$ space shifts: u, v $u \cdot C_{i,j} = rac{1}{3}(C_{i,j+1} + C_{i-1,j} + C_{i+1,j-1})$ $v \cdot C_{i,j} = rac{1}{3}(C_{i-1,j+1} + C_{i,j-1} + C_{i+1,j})$	$\mathrm{DTT}_{n imes n}$ ICASSP '04

Organization

Overview

The algebraic structure underlying linear signal processing

From shift to signal model: Time and space

- From infinite to finite signal models
- Fast algorithms

Conclusions

Carnegie Mellon

DCT, type III

II. THE ODD-FACTOR ALGORITHM The length-N IDCT of input sequence X(k) is defined by

$$x(n) = \sum_{k=0}^{N-1} X(k) \cos \frac{\pi (2n+1)k}{2N} \qquad 0 \le n \le N-1 \quad (1)$$

where sequence length N is an arbitrarily composite integer expressed by

$$N = 2^{m} \times q = 2^{m} \times \prod_{i=1}^{\infty} (2i+1)^{r_{i}}$$
(2)

Algorithm derivation

mutually prime). The IDCT can be decomposed into

$$\begin{aligned} x \left(qn + \frac{q-1}{2}\right) \\ &= \sum_{k=0}^{N-1} X(k) \cos \frac{\pi (2n+1)k}{2(N/q)} \\ &x(qn+m) \\ &= \sum_{k=0}^{N-1} X(k) \cos \frac{\pi [q(2n+1) - (q-1-2m)]k}{2N} \\ &x(qn+q-m-1) \\ &= \sum_{k=0}^{N-1} X(k) \cdot \cos \frac{\pi [q(2n+1) + (q-1-2m)]k}{2N} \end{aligned}$$
(5)

where for (3)–(5), n = 0 to N/q - 1 and m = 0 to (q - 3)/2. Equation (3) can be rewritten into

$$\begin{aligned} x \bigg(qn + \frac{q-1}{2} \bigg) \\ &= \sum_{k=1}^{N/q-1} \left\{ \sum_{i=1}^{(q-1)/2} X \bigg(\frac{2iN}{q} + k \bigg) \right. \\ &\cdot \cos \frac{\pi (2n+1)(2iN/q+k)}{2(N/q)} \\ &+ \sum_{k=1}^{(q-1)/2} X \bigg(\frac{2iN}{q} - k \bigg) \\ &\cdot \cos \frac{\pi (2n+1)(2iN/q-k)}{2(N/q)} \bigg\} \end{aligned}$$

$$+\sum_{k=1}^{N/q-1} X(k) \cos \frac{\pi (2n+1)k}{2(N/q)} \\ +\sum_{i=0}^{(q-1)/2} X\left(\frac{2iN}{q}\right) \cos \frac{\pi (2n+1)(2iN/q)}{2(N/q)} \\ =\sum_{k=1}^{N/q-1} \left\{ X(k) + \sum_{i=1}^{(q-1)/2} (-1)^i \left[X\left(\frac{2iN}{q} + k\right) \right. \\ \left. + X\left(\frac{2iN}{q} - k\right) \right] \right\} \cos \frac{\pi (2n+1)k}{2(N/q)} \\ \left. + \sum_{i=0}^{(q-1)/2} (-1)^k X\left(\frac{2iN}{q}\right) \\ = \sum_{i=0}^{N/q-1} U(k) \cos \frac{\pi (2n+1)k}{2(N/q)}.$$
(6)

It is noted that input x[(2i + 1)N/q] is excluded from (6). By defining $S_i(k) = X(2iN/q + k) + X(2iN/q - k)$ and $T_i(k) = X(2iN/q + k) - X(2iN/q - k)$, where $i = 1, \dots, (q - 1)/2$, we have

$$(k) = \begin{cases} X(k) + \sum_{i=1}^{(q-1)/2} (-1)^i S_i(k) & k = 1, \cdots, N/q - 1\\ \sum_{i=0}^{(q-1)/2} (-1)^i X\left(\frac{2iN}{q}\right) & k = 0. \end{cases}$$
(7)

Therefore, (6) can be computed by a length-N/q IDCT. By combining (4) and (5), we form two new sequences defined by

U

$$\begin{split} F(n,m) &= \frac{x(qn+m) + x(qn+q-m-1)}{2} \\ &= \sum_{k=0}^{N-1} X(k) \cos \frac{\pi(q-1-2m)k}{2N} \\ &\cdot \cos \frac{\pi(2n+1)k}{2(N/q)} \\ G(n,m) &= \frac{x(qn+m) - x(qn+q-m-1)}{2} \\ &= \sum_{k=0}^{N-1} X(k) \sin \frac{\pi(q-1-2m)k}{2N} \\ &\cdot \sin \frac{\pi(2n+1)k}{2(N/q)}. \end{split}$$

(8)

(9)

If we define
$$\alpha=\pi(q-1-2m)$$
 for simplicity, (8) can be furthed ecomposed into

$$\begin{split} Y(n,m) &= \sum_{k=1}^{N/q-1} \left\{ \sum_{i=1}^{(q-1)/2} X\left(\frac{2iN}{q} + k\right) \right. \\ &\left. \cdot \cos\frac{\alpha(2iN/q + k)}{2N} \cos\frac{\pi(2n+1)(2iN/q + k)}{2(N/q)} \right. \\ &\left. + \sum_{i=1}^{(q-1)/2} X\left(\frac{2iN}{q} - k\right) \right. \\ &\left. \cdot \cos\frac{\alpha(2iN/q - k)}{2N} \cos\frac{\pi(2n+1)(2iN/q - k)}{2(N/q)} \right. \\ &\left. + \sum_{k=1}^{N/q-1} X(k) \cos\frac{\alpha k}{2N} \cos\frac{\pi(2n+1)k}{2(N/q)} \right] \end{split}$$

$$\begin{aligned} &+ \sum_{i=0}^{(q-1)/2} X\left(\frac{2iN}{q}\right) \cos\frac{i\alpha}{q} \\ &\cdot \cos\frac{\pi(2n+1)(2iN/q)}{2(N/q)} \\ &= \sum_{k=1}^{N/q-1} \sum_{i=1}^{(q-1)/2} (-1)^i \left\{ S_i(k) \cos\frac{\pi\alpha_i}{q} \cos\frac{\alpha k}{2N} \right. \\ &- T_i(k) \sin\frac{\alpha i}{q} \sin\frac{\alpha k}{2N} \right\} \cos\frac{\pi(2n+1)k}{2(N/q)} \\ &+ \sum_{k=1}^{N/q-1} X(k) \cos\frac{\alpha k}{2N} \cos\frac{\pi(2n+1)k}{2(N/q)} \\ &+ \sum_{i=0}^{(q-1)/2} (-1)^i X\left(\frac{2iN}{q}\right) \cos\frac{\alpha i}{q} \\ &= \sum_{k=0}^{N/q-1} V(k,m) \cos\frac{\pi(2n+1)k}{2(N/q)} \end{aligned}$$

sequence length that is a power of odd integers. Therefore, the odd-factor algorithm is general and particularly suited to sequence length containing any possible combination of odd factors. Fig. 1 shows an example for N = 27. In principle, the proposed odd-factor algorithm is the reverse process of the FDCT algorithm presented in [12].

For a composite sequence length containing both odd and even factors, the radix-2 and the odd-factor algorithms can be jointly used. In principle, the decomposition process can be carried out in many ways. However, a lower count of operations is obtained if the decomposition process starts with the ascending order of the factors of N. To minimize the required number of arithmetic operations, we generally prefer a computational complexity whose growth rate with the sequence length is as small as possible. In [12], it was proved that the growth rate of the computational complexity is proportional to the values of the odd factors. From Fig. 2, which shows the computational complexity in terms of the number of arithmetic operations per transform point, it can be observed that the growth rate of the computational complexity with the sequence lengths for $N = 5^m$ is larger than that for $N = 3^m$, and the smallest growth rate is achieved for $N = 2^m$. This observation indicates that the smallest

Typical derivation (More than hundred such papers)

- Reason for existence?Underlying principle?
- All algorithms found?

$$V(k,m) = \begin{cases} X(k) \cos \frac{\alpha k}{2N} + \sum_{i=1}^{(q-1)/2} (-1)^i \left\{ S_i(k) \cos \frac{\alpha i}{q} \cos \frac{\alpha k}{2N} - T_i(k) \sin \frac{\alpha i}{q} \sin \frac{\alpha k}{2N} \right\} & k = 1, \cdots, N/q - 1 \\ \sum_{i=0}^{(q-1)/2} (-1)^i X\left(\frac{2iN}{q}\right) \cos \frac{\alpha i}{q} & k = 0. \end{cases}$$

$$W(k,m) = \begin{cases} \begin{cases} X(k) + \sum_{i=1}^{(q-1)/2} (-1)^i S_i(k) \cos \frac{\alpha i}{q} \\ + \left\{ \sum_{i=1}^{(q-1)/2} (-1)^i T_i(k) \sin \frac{\alpha i}{q} \right\} \cos \frac{\alpha k}{2N} \quad k = 1, \cdots, N/q - 1 \\ \sum_{i=1}^{(q-1)/2} (-1)^i X \left[\frac{2i-1}{q} \right] \sin \frac{\alpha(2i-1)}{2q} \quad k = N/q. \end{cases}$$
(13)

G. Bi "Fast Algorithms for the Type-III DCT of Composite Sequence Lengths" IEEE Trans. SP 47(7) 1999

(11)

Fast Algorithms: Cooley-Tukey FFT

Signal model: Finite z-transform $\mathcal{A} = \mathcal{M} = \mathbb{C}[x]/(x^n - 1)$

$$\Phi: \; (s_0,\ldots,s_{n-1})\mapsto s(x)=\sum s_i x^i\in \mathcal{M}$$

Fourier transform

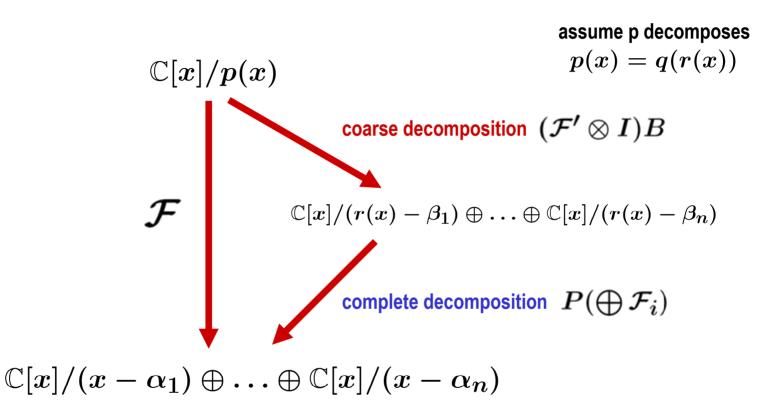
$$\mathrm{DFT}_n: \ \mathbb{C}[x]/(x^n-1) \ o \ \mathbb{C}[x]/(x-\omega_n^0)\oplus\ldots\oplus\mathbb{C}[x]/(x-\omega_n^{n-1})$$

$y = \mathrm{DFT}_n \cdot s$ $\mathrm{DFT}_n = [\omega_n^{k\ell}]_{0 \leq k, \ell < n}$ $y_k = \sum_{\ell=0}^{n-1} \omega_n^{k\ell} s_\ell$

Cooley-Tukey FFT

 $y_{n_2 j_1 + j_2} = \sum_{k_1 = 0}^{n_1 - 1} \left(\omega_n^{j_2 k_1} \right) \left(\sum_{k_2 = 0}^{n_2 - 1} x_{n_1 k_2 + k_1} \omega_{n_2}^{j_2 k_2} \right) \omega_{n_1}^{j_1 k_1} \qquad \text{DFT}_n = L_{n_2}^n (I_{n_1} \otimes \text{DFT}_{n_2}) T_{n_1}^n (\text{DFT}_{n_1} \otimes I_{n_2})$

Cooley-Tukey FFT Type Algorithms



Example:

 $x^n - 1 = (x^m)^k - 1$ yields Cooley-Tukey FFT DFT $_n = L^n_m(I_k \otimes \mathrm{DFT}_m)T^n_m(\mathrm{DFT}_k \otimes I_m)$

Application to DCTs/DSTs

Decomposition properties of Chebyshev polynomials

 $T_{km} = T_k(T_m)$

Induced Cooley-Tukey type algorithms (most not known before)

 $DTT_{n}(r) = K_{m}^{n}(\bigoplus DTT_{m}(r_{i}))(\overline{DST-3}_{k}(r) \otimes I_{m})B_{n,k}$ $DTT_{n}(r) = K_{m}^{n}(\bigoplus DTT_{m}(r_{i}))(DCT-3_{k}(r) \otimes I_{m})B_{n,k}$ DCT/DST 3/4

DCT/DST 1/2

DCT/DST 5-8

Algebraic Theory of Algorithms (Beyond DFT)

General Cooley-Tukey type algorithms

- many new algorithms for DCTs/DSTs, RDFT, DHT, DQT, DTT, ...
- General prime-factor type algorithms
- General Rader type algorithms
- Explains and easily derives practically all existing algorithms and relationships between transforms

Formulates general principle that accounts for all algorithms

Organization

Overview

The algebraic structure underlying linear signal processing

From shift to signal model: Time and space

- From infinite to finite signal models
- Fast algorithms

Conclusions

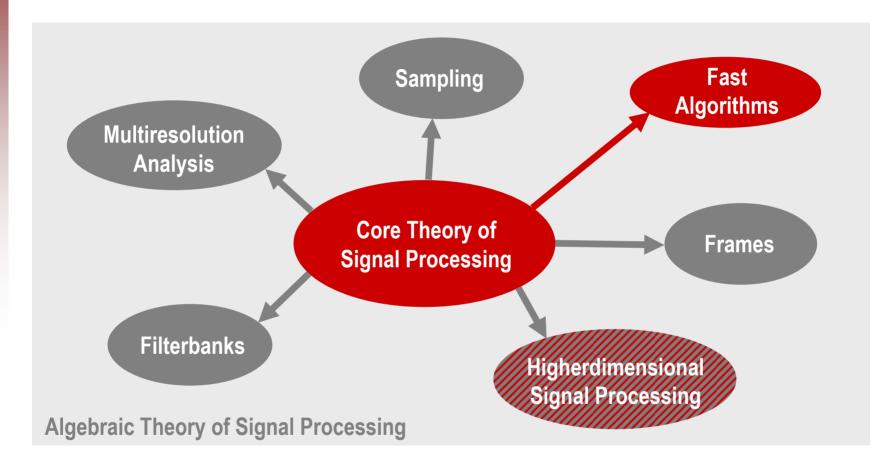
Related Work on Algebraic Methods in SP

- Algebraic systems theory (Kalman, Basile/Marro, Wonham/Morse, Willems/Mitter, Fuhrmann, Fliess, ...)
 - Focuses on infinite discrete time; different type of questions
- Fourier analysis/Fourier transforms on groups G (Beth, Rockmore, Clausen, Maslen, Healy, Terras, ...)
 - In the algebraic theory the special case $\mathcal{A} = \mathcal{M} = \mathbb{C}[G]$
 - If G non-commutative, necessarily non-shift-invariant
 - Algebraic theory provides associated filters etc., ties to SP concepts
- Algebraic methods to derive DFT algorithms (Nicholson, Winograd, Nussbaumer, Auslander, Feig, Burrus, …)
 - Recognizes algebra/module for DFT, but only used for deriving algorithms

Origin of this work

- Beth (84), Minkwitz (93), Egner/Püschel (97/98)
- Helpful hints: Steidl (93), Moura/Bruno (98), Strang (99)

Future Work

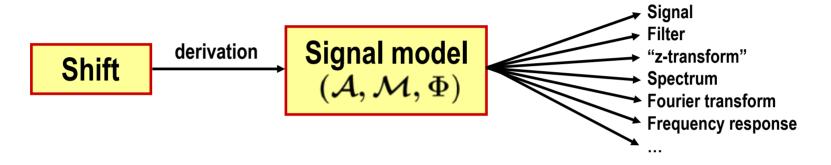


current research

Collaborators: José Moura, Jelena Kovacevic, Martin Rötteler

Algebraic Theory of Signal Processing: Conclusions

Signal model: One concept instantiating different SP methods



- General (axiomatic) approach to linear SP
- Finite SP, understanding existing transforms
- First new applications:
 - New SP methods (non-separable 2-D)
 - Comprehensive theory of fast algorithms

SMART project: www.ece.cmu.edu/~smart

back1

back2

back3

Chebyshev Polynomials

• Defining three-term recurrence: $C_0 = 1$, $C_1 = ax + b$ choice

 $C_{n+1} = 2xC_n - C_{n-1} \quad \Leftrightarrow \quad xC_n = \frac{1}{2}(C_{n+1} + C_{n-1})$

Special cases:

symmetry

Closed forms:
$$\cos \theta = x$$

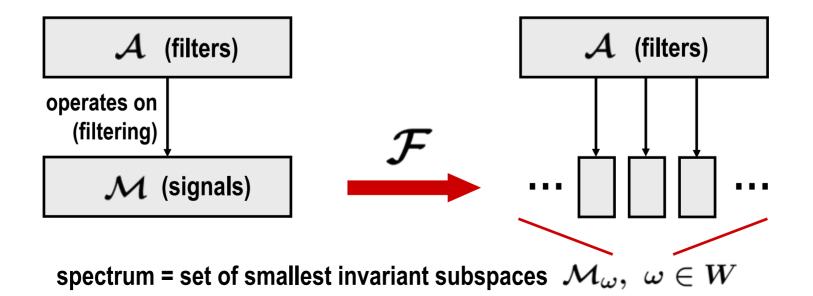
 $T_n = \cos n\theta$ $U_n = \frac{\sin(n+1)\theta}{\sin \theta}$ $V_n = \frac{\cos(n+\frac{1}{2})\theta}{\cos \frac{1}{2}\theta}$ $W_n = \frac{\sin(n+\frac{1}{2})\theta}{\sin \frac{1}{2}\theta}_{39}$

The General Fourier Transform ${\cal F}$

Infinite discrete time:

$$egin{aligned} \mathcal{F}: & \sum s_n z^{-n} \mapsto \sum s_n e^{-j\omega n}, & \omega \in [-\pi,\pi) \ & \downarrow ext{ projection onto } \ & \mathcal{M}_\omega = \langle \sum e^{j\omega n} z^{-n}
angle & ext{ eigenspace for all filters } \end{aligned}$$

Given any signal model $(\mathcal{A}, \mathcal{M}, \Phi)$



Finite Shift-Invariant Signal Models

Finite signals: $(s_0, \ldots, s_{n-1}) \quad \dim(\mathcal{M}), \dim(\mathcal{A}) < \infty$

Which finite-dimensional algebras are commutative? Answer: Polynomial algebras (focus on one variable)

$$\mathbb{C}[x]/p(x) = \{h(x) = \sum h_k x^k \mid \deg(h) < \deg(p)\}$$

Signal model:

 $\mathcal{A} = \mathcal{M} = \mathbb{C}[x]/p(x), \quad \Phi: \; (s_0, \dots, s_{n-1}) \mapsto \sum s_i p_i(x)$

Filtering (convolution): multiplication modulo p(x)

 $h(x) \cdot s(x) \mod p(x), \quad h(x) \in \mathcal{A}, \ s(x) \in \mathcal{M}$