Algorithms and Computation in Signal Processing

special topic course 18-799B spring 2005
27 ${ }^{\text {th }}$ Lecture Apr. 19, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

Miscellaneous

■ Online course evaluation

- Are open now
- Please complete

■ Research papers
(first version, only some experiments may be missing)

- Due tomorrow
- Send ps or pdf to me
- Final version due 1 week after your talk (hard deadline, otherwise I grade the first version)

Research Project Presentations

■ Rules:

- Send slides to me before class
- PHD student + nonPhD student: nonPhD student presents
- Other pairings: the one who never gave an official presentation, otherwise it is up to you
- 20 minutes (hard limit as in a conference)

Schedule

■ Tuesday 26 ${ }^{\text {th }}$:

- Woon Ho Jung
- Vijay Chandrasekhar/Bryan Chen
- Roland Wunderlich
- Sungchul Han/Suk Chan Kang

■ Thursday $28^{\text {th }}$:

- Eizan Miyamoto/Thomas Merryman
- Joohoon Lee/Dongkenn Lee
- John Cole
- Marek Telgarsky/Peter Milder

Gauss Elimination and LU Factorization

Reference: Jim Demmel, "Applied Numerical Linear Algebra," SIAM 1997, pp. 38 and pp. 72

Overview?

■ Gauss elimination:

- Given matrix A, vector b
- Algorithm to solve a system of linear equations $\mathrm{Ax}=\mathrm{b}$ for x

■ LU factorization:

- Given matrix A
- Factorize A=LU, where
- L is lower triangular, ones on the diagonal
- U is upper triangular

Mostly Blackboard

- The relationship between Gauss elimination and LU factorization
- Inplace BLAS1/2 algorithm for LU factorization
- Cost analysis
- Blocking: BLAS3 algorithm for LU factorization

■ Pivoting

■ On the Complexity: MMM, matrix inverse, LU factorization, determinant

