# Algorithms and Computation in Signal Processing

## special topic course 18-799B spring 2005 24<sup>th</sup> and 25<sup>th</sup> Lecture Apr. 07 and 12, 2005

Instructor: Markus Pueschel TA: Srinivas Chellappa

## **Research Projects**

## Presentations last week of April (26<sup>th</sup> and 28<sup>th</sup>)

- We distribute the dates in the lecture on the 12<sup>th</sup>
- Presentations 20 minutes + 5 minutes questions (~17-20 slides)

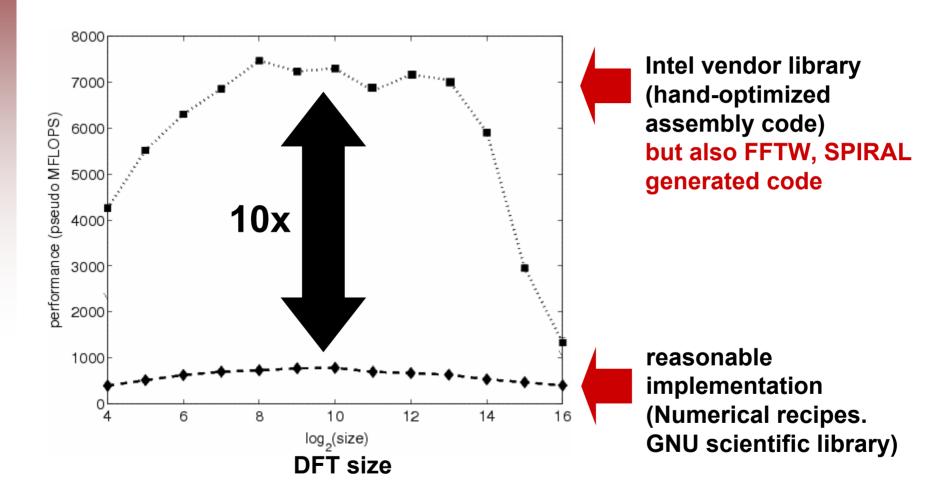
### Research paper

- Due April 20<sup>th</sup>, the only thing that may be missing are some (but not all) experimental results
- You'll get feedback from me
- Final version with feedback incorporated due one week after your presentation

## Remarks

- Follow guide to benchmarking!
- Try different sets of compiler flags to be sure
- Do a cost analysis

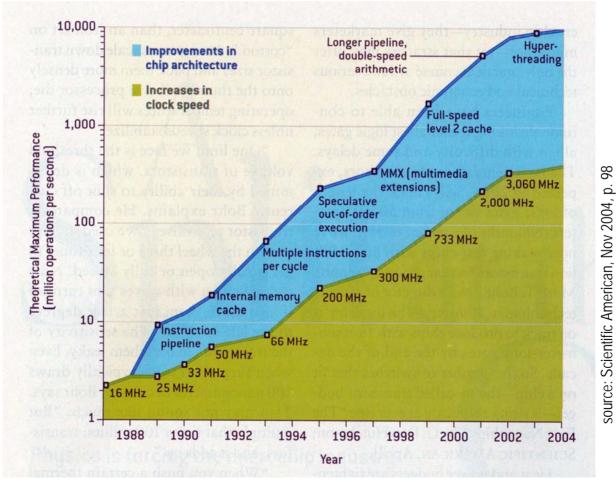
## **The Problem Again**



#### Writing fast numerical code is a tough problem

## Moore's Law

Moore's Law: exponential (x2 in ~18 months) increase number of transistors/chip



But everything has its price ...

# Moore's Law: Consequences

### Computers are very complex

- multilevel memory hierarchy
- special instruction sets beyond standard C programming model
- undocumented hardware optimizations

## Consequences:

- Runtime depends only roughly on the operations
- Runtime behavior is hard to understand
- Compiler development can hardly keep track
- The best code (and algorithm) is platform-dependent
- It is very difficult to write really fast code

## Computers evolve fast

- Highly tuned code becomes obsolete almost as fast as it as written
- It'll get rather worse: Multicoresystems

## **Solution #1: Brute Force**

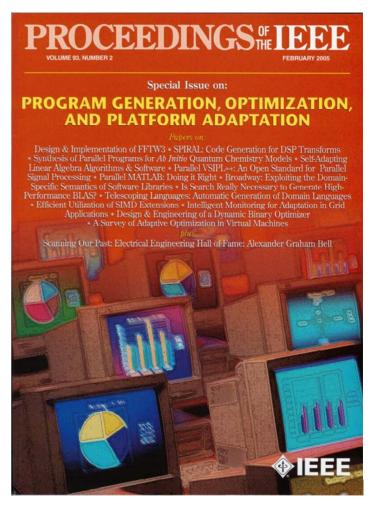
Thousands of programmers hand-write and hand-tune (assembly) code for the same numerical problems and for every platform and whenever a new platform comes out?

### Hmm.....

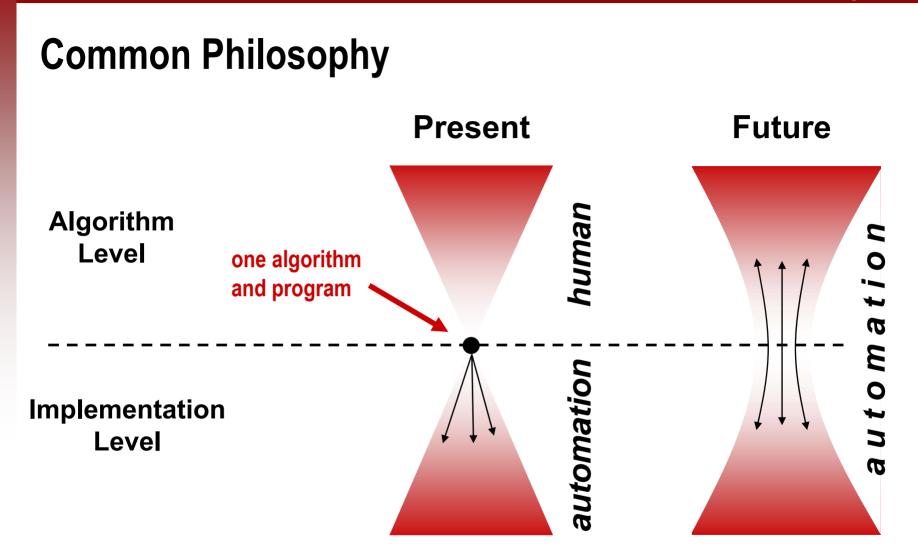
(but it's current practice)

# Solution #2: New Approaches to Code Optimization and Code Creation

- ATLAS: Code generation/optimization for BLAS
- SPARSITY/BeBop: Code generation/optimization for sparse linear algebra routines
- FFTW: Self-adaptive DFT library + DFT kernel generator
  - **SPIRAL:** Code generation/optimization for linear signal transforms



Proceedings of the IEEE special issue, Feb. 2005



a new breed of domain-aware approaches/tools push automation beyond what is currently possible applies for software and hardware design alike

## SPIRAL www.spiral.net

#### **Sponsors:**

DARPA NSF ACR-0234293 NSF ITR/NGS-0325687

#### and:

Cylab, CMU Austrian Science Fund Intel ITRI, Taiwan ENSCO, Inc.

#### ~40 Publications

#### **Overview paper:**

Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo, **SPIRAL: Code Generation for DSP Transforms,** Proceedings of the IEEE

#### Team:

James C. Hoe (ECE, CMU) Jeremy Johnson (CS, Drexel) José M. F. Moura (ECE, CMU) David Padua (CS, UIUC) Markus Püschel (ECE, CMU) Manuela Veloso (CS, CMU) Robert W. Johnson (Quarry Comp. Inc.) Christoph Überhuber (Math, TU Wien

#### Students/PostDocs:

Bryan W. Singer (CS, CMU) Jianxin Xiong (CS, UIUC) Srinivas Chellappa (ECE, CMU) Franz Franchetti (ECE, CMU, before TU Vienna) Aca Gacic (ECE, CMU) Yevgen Voronenko (ECE, CMU) Anthony Breitzman (CS, Drexel) Kang Chen (CS, Drexel) Pinit Kumhom (ECE, Drexel) Adam Zelinski (ECE, CMU) Peter Tummeltshammer (CS, TU Vienna)

# **Spiral**

- Code generation from scratch for linear digital signal processing (DSP) transforms (DFT, DCT, DWT, filters, ....)
- Automatic optimization and platform-tuning at the algorithmic level and the code level
- Different code types supported (scalar, vector, FMA, fixedpoint, multiplierless, ...)
- Goal: A <u>flexible</u>, <u>extensible</u> code generation framework that can <u>survive time</u> (to whatever extent possible) for an entire domain of algorithms

**Research question:** To what extent is it possible to abolish handcoding and handoptimization?

# Code Generation and Tuning as Optimization Problem

- T a DSP transform to be implemented
- P the target platform
- $\mathcal{I} = \mathcal{I}(\mathbf{T}, \mathbf{P})$  set of possible implementations of T on P
- $C=C(T,I,P)\;$  cost of implementation I of T on P

The implementation of T that is tuned to P is given by:

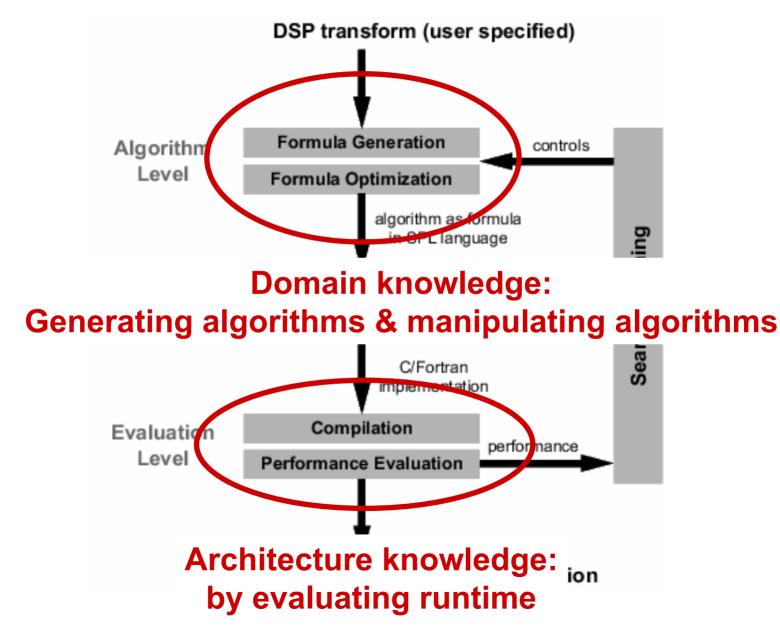
$$\widehat{\mathbf{I}} = \widehat{\mathbf{I}}(\mathbf{P}) = \operatorname{arg\,min}_{\mathbf{I} \in \mathcal{I}(\mathbf{P})} \mathbf{C}(\mathbf{T}, \mathbf{P}, \mathbf{I})$$

#### **Problems:**

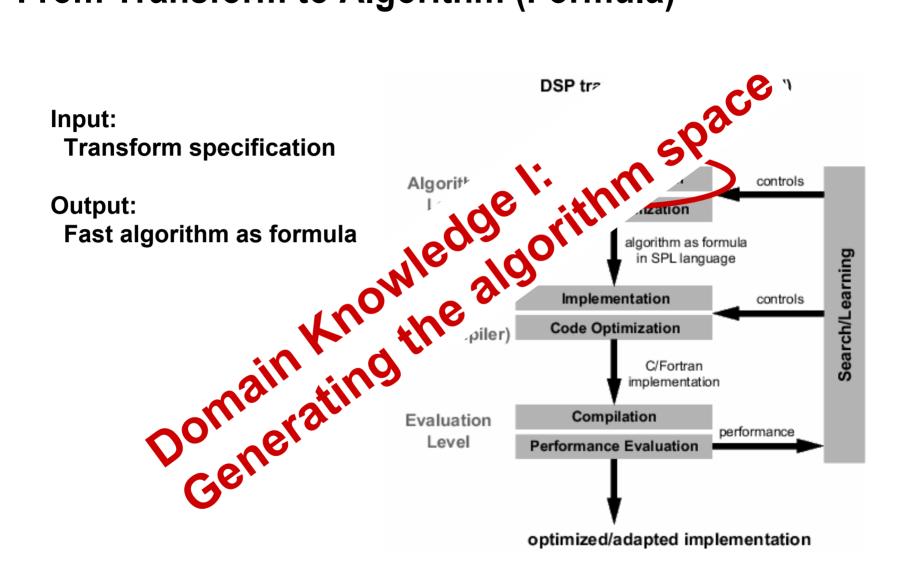
- How to characterize and generate the set of implementations?
- How to efficiently minimize C?

#### Spiral exploits the <u>domain-specific structure</u> to implement a solver for this optimization problem

## Spiral's architecture



## From Transform to Algorithm (Formula)



## **DSP Algorithms: Example 4-point DFT**

#### Cooley/Tukey FFT (size 4):

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

Fourier transformDiagonal matrix (twiddles)II $DFT_4 = (DFT_2 \otimes I_2) \cdot T_2^4 \cdot (I_2 \otimes DFT_2) \cdot L_2^4$ IIIIKronecker productIdentityPermutation

- mathematical notation exhibits structure: SPL (signal processing language)
- Suitable for computer representation
- contains all information to generate code

# **SPL: Definition (BNF)**

# Description language for linear DSP algorithms Definition (BNF):

(product) (direct sum) (tensor product) (overlapped tensor product) (conversion to real)

### **Some Definitions:**

$$A \oplus B = \begin{bmatrix} A \\ B \end{bmatrix}$$
$$A \otimes B = \begin{bmatrix} a_{k,\ell}B \end{bmatrix}, \text{ where } A = \begin{bmatrix} a_{k,\ell} \end{bmatrix} \qquad I_n \otimes A = \begin{bmatrix} A \\ A \\ \vdots \\ F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$\mathsf{F}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \mathsf{R}_\alpha = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

## **DSP Algorithms: Spiral Terminology**

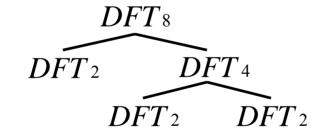
**Transform** *DFT<sub>n</sub>* parameterized matrix

### **Rule** $DFT_{nm} \rightarrow (R)$

$$DFT_{nm} \rightarrow (DFT_n \otimes I_m) \cdot D \cdot (I_n \otimes DFT_m) \cdot P$$

a breakdown strategy product of sparse matrices

**Ruletree** 



- recursive application of rules
- uniquely defines an algorithm
- efficient representation
- easy manipulation

#### Formula

$$DFT_8 = (F_2 \otimes I_4) \cdot D \cdot (I_2 \otimes (I_2 \otimes F_2 \cdots)) \cdot P$$

- few constructs and primitives
- uniquely defines an algorithm
- can be translated into code

## Some Transforms

$$\begin{aligned} \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-2}_{n} &= \left[\cos(k(2\ell+1)\pi/2n)\right]_{0\leq k,\ell < n},\\ \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-3}_{n} &= \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-2}_{n}^{T} \quad (\text{transpose}),\\ \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-4}_{n} &= \left[\cos((2k+1)(2\ell+1)\pi/4n)\right]_{0\leq k,\ell < n},\\ \mathbf{I}\mathbf{M}\mathbf{D}\mathbf{C}\mathbf{T}_{n} &= \left[\cos((2k+1)(2\ell+1+n)\pi/4n)\right]_{0\leq k<2n,0\leq \ell < n},\\ \mathbf{R}\mathbf{D}\mathbf{F}\mathbf{T}_{n} &= \left[r_{k\ell}\right]_{0\leq k,\ell < n}, \quad r_{k\ell} = \begin{cases} \cos\frac{2\pi k\ell}{n}, \quad k\leq \lfloor\frac{n}{2}\rfloor\\ -\sin\frac{2\pi k\ell}{n}, \quad k> \lfloor\frac{n}{2}\rfloor,\\ -\sin\frac{2\pi k\ell}{n}, \quad k> \lfloor\frac{n}{2}\rfloor,\\ \end{bmatrix}\\ \mathbf{W}\mathbf{H}\mathbf{T}_{n} &= \begin{bmatrix} \mathbf{W}\mathbf{H}\mathbf{T}_{n/2} \quad \mathbf{W}\mathbf{H}\mathbf{T}_{n/2}\\ \mathbf{W}\mathbf{H}\mathbf{T}_{n/2} - \mathbf{W}\mathbf{H}\mathbf{T}_{n/2} \end{bmatrix}, \quad \mathbf{W}\mathbf{H}\mathbf{T}_{2} = \mathbf{D}\mathbf{F}\mathbf{T}_{2},\\ \mathbf{D}\mathbf{H}\mathbf{T} &= \left[\cos(2k\ell\pi/n) + \sin(2k\ell\pi/n)\right]_{0\leq k,\ell < n}.\end{aligned}$$

#### **Spiral currently contains 36 transforms**

## **Some Breakdown Rules**

$$\begin{array}{rcl} \mathrm{DFT}_n & \rightarrow & (\mathrm{DFT}_k \otimes \mathrm{I}_m) \ \mathsf{T}_m^n(\mathrm{I}_k \otimes \mathrm{DFT}_m) \ \mathsf{L}_k^n, & n = km \\ \mathrm{DFT}_n & \rightarrow & P_n(\mathrm{DFT}_k \otimes \mathrm{DFT}_m) Q_n, & n = km, \ \gcd(k,m) = 1 \\ \mathrm{DFT}_p & \rightarrow & R_p^T(\mathrm{I}_1 \oplus \mathrm{DFT}_{p-1}) D_p(\mathrm{I}_1 \oplus \mathrm{DFT}_{p-1}) R_p, & p \ \text{prime} \\ \mathrm{DCT-3}_n & \rightarrow & (\mathrm{I}_m \oplus \mathrm{J}_m) \ \mathsf{L}_m^n(\mathrm{DCT-3}_m(1/4) \oplus \mathrm{DCT-3}_m(3/4)) \\ & & \cdot(\mathsf{F}_2 \otimes \mathrm{I}_m) \begin{bmatrix} \mathrm{I}_m & 0 \oplus - \mathrm{J}_{m-1} \\ \frac{1}{\sqrt{2}}(\mathrm{I}_1 \oplus 2\mathrm{I}_m) \end{bmatrix}, & n = 2m \\ \mathrm{DCT-4}_n & \rightarrow & S_n\mathrm{DCT-2}_n \ \mathrm{diag}_{0 \leq k < n}(1/(2\cos((2k+1)\pi/4n)))) \\ \mathrm{IMDCT}_{2m} & \rightarrow & (\mathrm{J}_m \oplus \mathrm{I}_m \oplus \mathrm{J}_m) \left( \left( \begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes \mathrm{I}_m \right) \oplus \left( \begin{bmatrix} -1 \\ -1 \end{bmatrix} \otimes \mathrm{I}_m \right) \right) \ \mathrm{J}_{2m} \ \mathrm{DCT-4}_{2m} \\ \mathrm{WHT}_{2k} & \rightarrow & \prod_{i=1}^t (\mathrm{I}_{2k_1 + \dots + k_{i-1}} \otimes \mathrm{WHT}_{2^{k_i}} \otimes \mathrm{I}_{2^{k_{i+1} + \dots + k_t}), & k = k_1 + \dots + k_t \\ \mathrm{DFT}_2 & \rightarrow & \mathsf{F}_2 \\ \mathrm{DCT-2}_2 & \rightarrow & \mathrm{diag}(1, 1/\sqrt{2}) \ \mathsf{F}_2 \\ \mathrm{DCT-4}_2 & \rightarrow & \mathrm{J}_2 \ \mathsf{R}_{13\pi/8} \end{array}$$

**Spiral contains 100+ rules** 

## **Some Breakdown Rules for Filters**

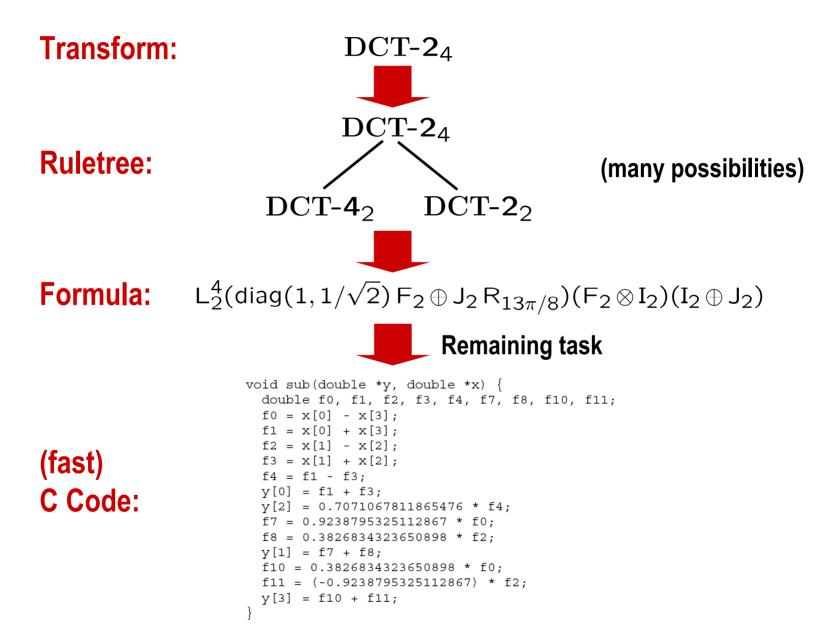
$$\begin{aligned} \operatorname{Filt}_{n}(h(z)) \to \operatorname{I}_{\lfloor \frac{n}{b} \rfloor} \otimes_{l+r} \left( \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right) & \oplus^{k} \operatorname{T}_{k} \left( h(z) z^{l-\lceil \frac{l+r}{b} \rceil b-k} \right) \right) \\ \operatorname{Filt}_{n}(h(z)) \to \operatorname{L}_{\frac{n}{2}}^{n} \operatorname{Filt}_{\frac{n}{2}} \left( \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right) & \cdot \\ \operatorname{Filt}_{\frac{n}{2}} \left( \begin{bmatrix} h_{0}(z) & & \\ & h_{1}(z) & \\ & & h_{0}(z) + h_{1}(z) \end{bmatrix} \right) & \operatorname{Filt}_{\frac{n}{2} + \frac{r+l-1}{2}} \left( \begin{bmatrix} 1 & -1 \\ z & -1 \\ 0 & 1 \end{bmatrix} \right) & \cdot \operatorname{L}_{2}^{n+r+l} \end{aligned}$$

 $\operatorname{Filt}_n(h(z)) \to \operatorname{R}_{n,l,r}^{\operatorname{zero}} \cdot \operatorname{C}_{n+l+r}(h(z))$ 

$$\mathbf{C}_n(h(z)) \to \mathbf{RDFT}_n^{-1} \cdot X(\hat{\mathbf{h}}) \cdot \mathbf{RDFT}_n,$$
  
 $\hat{\mathbf{h}} = \mathbf{RDFT}_n \cdot \mathbf{h}$ 

Aca Gacic, Automatic Implementation and Platform Adaptation of Discrete Filtering and Wavelet Algorithms, Ph.D. thesis, Electrical and Computer Engineering, Carnegie Mellon University, 2004

# Formula- (Algorithm) generation



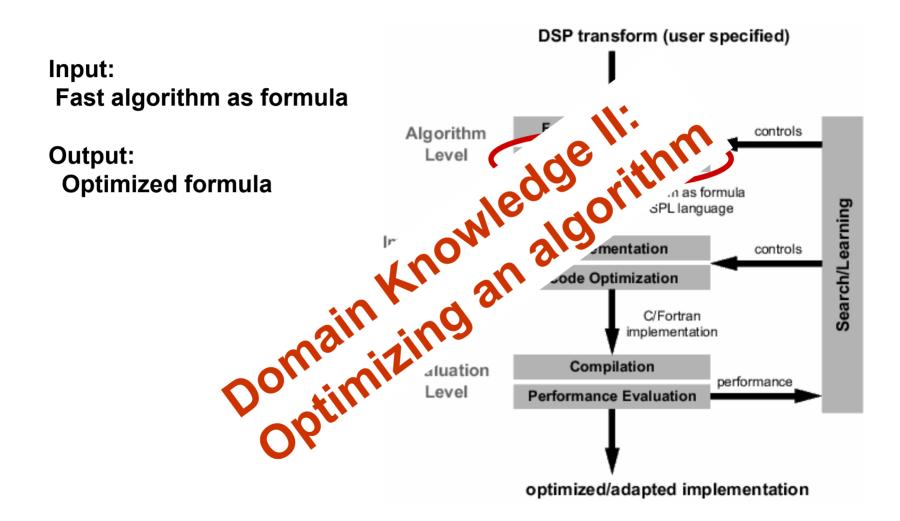
## **Set of Algorithms**

### Given a transform:

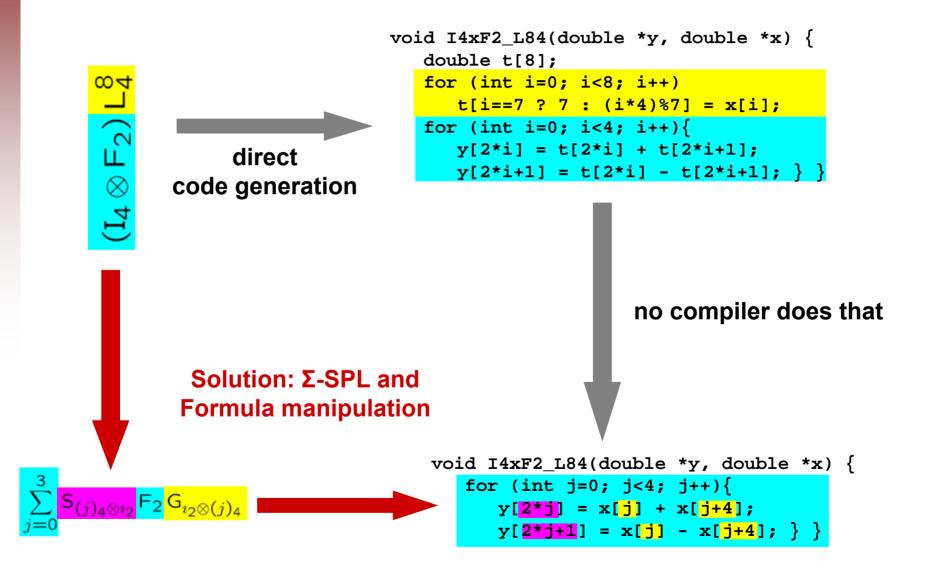
- Apply breakdown rules recursively until all occurring transforms are expanded
- Choice of rules at each step yields (usually) exponentially large algorithms space:
  - about equal in operations count
  - differ in data flow

| k | # DFTs, size 2 <sup>k</sup> | # DCT IV, size 2 <sup>k</sup> |
|---|-----------------------------|-------------------------------|
| 1 | 1                           | 1                             |
| 2 | 6                           | 10                            |
| 3 | 40                          | 126                           |
| 4 | 296                         | 31242                         |
| 5 | 27744                       | 1924443362                    |
| 6 | 162570361280                | 7343815121631354242           |
| 7 | ~1.01 • 10^27               | ~1.07 • 10^38                 |
| 8 | ~2.31 • 10^61               | ~2.30 • 10^76                 |
| 9 | ~2.86 • 10^133              | ~1.06 • 10^153                |

## From Algorithm (Formula) to Optimized Algorithm



## **Motivation: Loop Fusion**

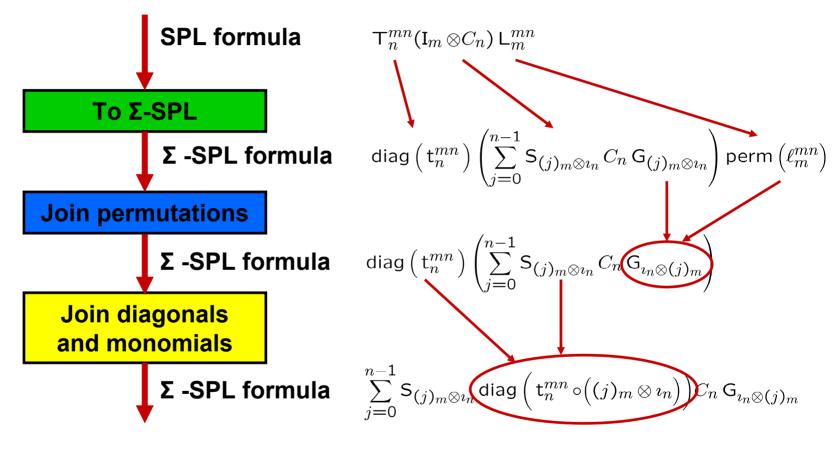


## **Formula Level Optimization**

## Main goals:

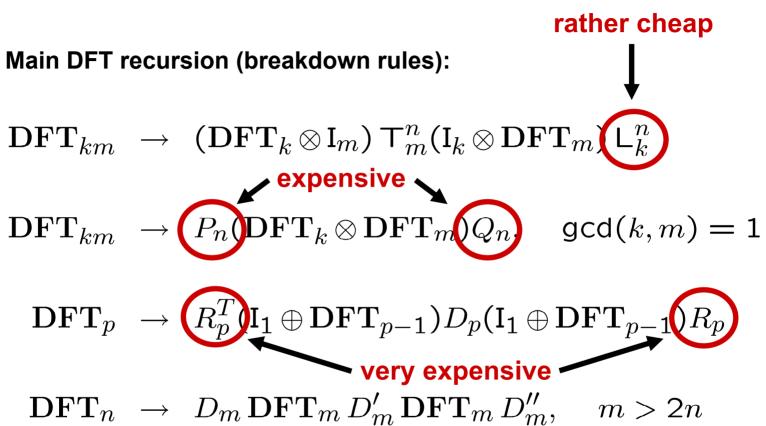
- Fusing iterative steps (fusing loops), e.g., permutations with loops
- Improving structure (data flow) for SIMD instructions
- Overcomes compiler limitations
- Formula manipulation through mathematical rules
- Implemented using multiple levels of rewriting systems
- Puts math knowledge into the system

## **Structure of Loop Optimization**



**Rules:**  $G_r \operatorname{perm}(\pi) = G_{\pi \circ r}, \quad \ell_m^{mn} \circ ((j)_m \otimes \iota_n) = \iota_n \otimes (j)_m$  $\operatorname{diag}(f) S_w = S_w \operatorname{diag}(f \circ w)$ 

## Loop Fusion Beyond Cooley-Tukey



#### How to fuse permutations from different combinations of rules?

## Example

array

**Consider the DFT formula fragment** 

$$(I_p \otimes (I_1 \oplus (I_r \otimes DFT_s)L_r^{rs}) W_p) V_{p,q}$$

$$Cooley-Tukey Rader Good-Thomas$$

$$In \Sigma-SPL: \sum_{j_1=0}^{p-1} \left( S_{((j_1)_p \otimes i_q) \circ (0)_+^{1 \to q} \circ i_1} G_{v^{p,q} \circ ((j_1)_p \otimes i_q) \circ \overline{w}_{1,g}^q \circ (0)_+^{1 \to q}} + \sum_{j_0=0}^{r-1} S_{((j_1)_p \otimes i_q) \circ (1)_+^{q-1 \to q} \circ ((j_0)_r \otimes i_s)} DFT_s$$

$$Complicated array access G_{v^{p,q} \circ ((j_1)_p \otimes i_q) \circ \overline{w}_{1,g}^q \circ (1)_+^{q-1 \to q} \circ \ell_r^{rs} \circ ((j_0)_r \otimes i_s)} \right).$$

# Example (cont'd)

After index function simplification:

$$\sum_{\substack{j_1=0\\b_1=qj_1}}^{p-1} \left( S_{h_{0,q}^{p\to pq} \circ (j_1)_p} G_{\hbar_{0,q}^{p\to pq} \circ (j_1)_p} + \sum_{\substack{j_0=0\\\phi_1=g^{j_0}}}^{r-1} S_{h_{qj_1+sj_0+1,1}^{s\to pq}} \operatorname{DFT}_s G_{\hbar_{b_1,p}^{q\to pq} \circ w_{\phi_1,g^s}} \right)$$
  
Simplified

array access

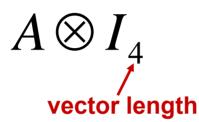
# Example (cont'd)

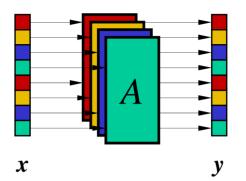
### Generated Code

```
// Input: _Complex double x[28], output: y[28]
int p1, b1;
for(int j1 = 0; j1 <= 3; j1++) {
   y[7*j1] = x[(7*j1\%28)];
   p1 = 1; b1 = 7*j1;
   for(int j0 = 0; j0 <= 2; j0++) {
      y[b1 + 2*j0 + 1] =
         x[(b1 + 4*p1)%28] + x[(b1 + 24*p1)%28];
      y[b1 + 2*j0 + 2] =
         x[(b1 + 4*p1)%28] - x[(b1 + 24*p1)%28];
      p1 = (p1*3\%7);
   }
}
```

## Vector code generation from SPL formulas

Naturally vectorizable construct





(Current) generic construct completely vectorizable:

$$\prod_{i=1}^{k} P_i D_i (A_i \otimes I_{\upsilon}) E_i Q_i \qquad \begin{array}{c} P_{\flat} Q_i & \text{permutations} \\ D_{\flat} E_i & \text{diagonals} \\ A_i & \text{arbitrary formulas} \\ \nu & \text{SIMD vector length} \end{array}$$

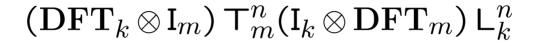
**Vectorization in two steps:** 

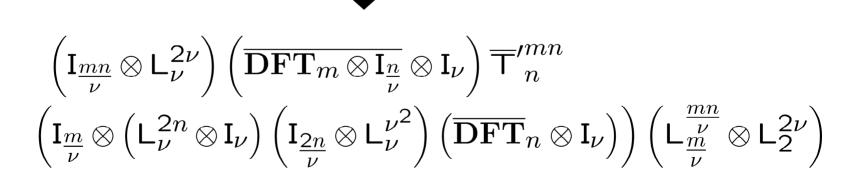
- 1. Formula manipulation using manipulation rules
- 2. Code generation (vector code + C code)

#### Formula manipulation overcomes compiler limitations



#### **Standard FFT**





**Formula manipulation** 

Vector FFT for v-way vector instructions

# Implementation of Formula Generation and Manipulation

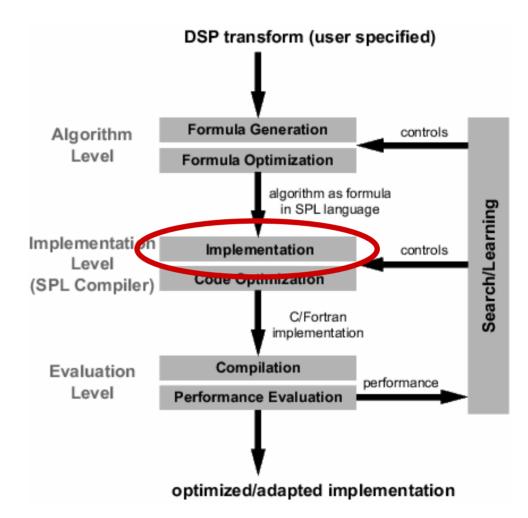
- Implementation using a computer algebra system (GAP)
- SPL/Σ-SPL implemented as recursive data types
- Exact representation of sin(), cos(), etc.
- Symbolic computation enables exact verification of rules

## From Optimized Algorithm (Formula) to Code

#### Input: Optimized formula

Output: Intermediate Code

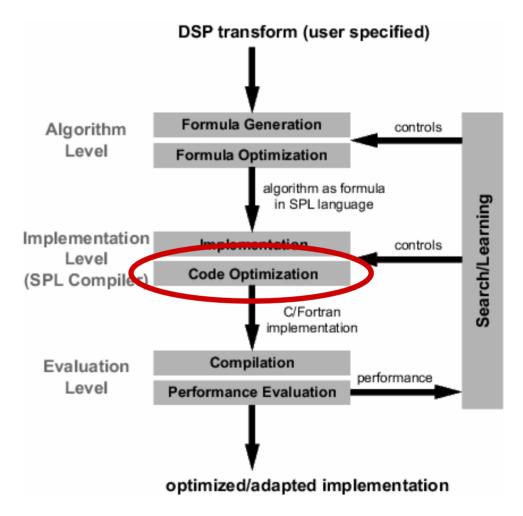
Straightforward



## From Code to Optimized Code

Input: Intermediate Code

Output: Optimized C code



## **Code Level Optimizations**

- Precomputation of constants
- Loop unrolling (controlled by search module)
- Constant inlining
- SSA code, scalar replacement, algebraic simplifications, CSE
- Code reordering for locality (optional)
- Conversion to FMA code (optional)
- Conversion to fixed point code (optional)
- Conversion to multiplierless code (optional)
- Finally: Unparsing to C (or Fortran)

## **Conversion to FMA code**

- FMA (fused multiply-add) or MAC (multiply accumulate) instructions: y = ±ax ± b
- Extension of the instruction set + specialized execution units
- As fast as a single add or multiply
- Conversion of linear algorithms to FMA code: blackboard
- Paper: Yevgen Voronenko and Markus Püschel Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures Proc. (ICASSP) 2004

## **Evaluating Code**

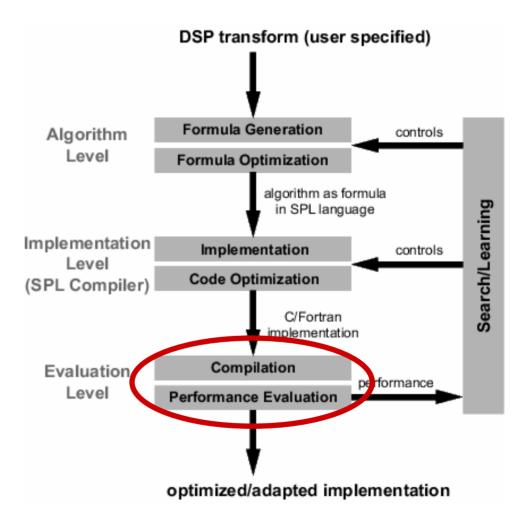
Input: Optimized C code

Output: Performance Number

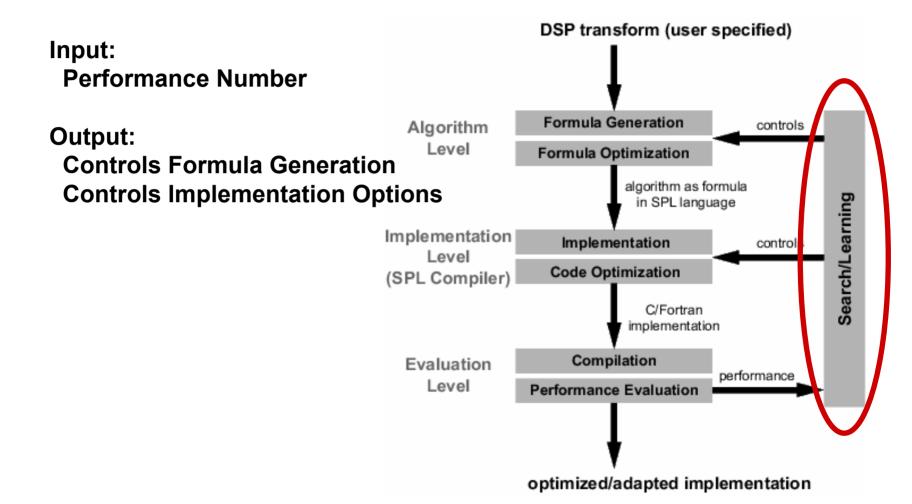
### Straightforward

Examples:

- runtime
- accuracy
- operations count



### Search (Learning) for the Best



## **Search Methods**

#### Search over:

- Algorithmic degrees of freedom (choice of breakdown rules)
- Implementation degrees of freedom (degree of unrolling)

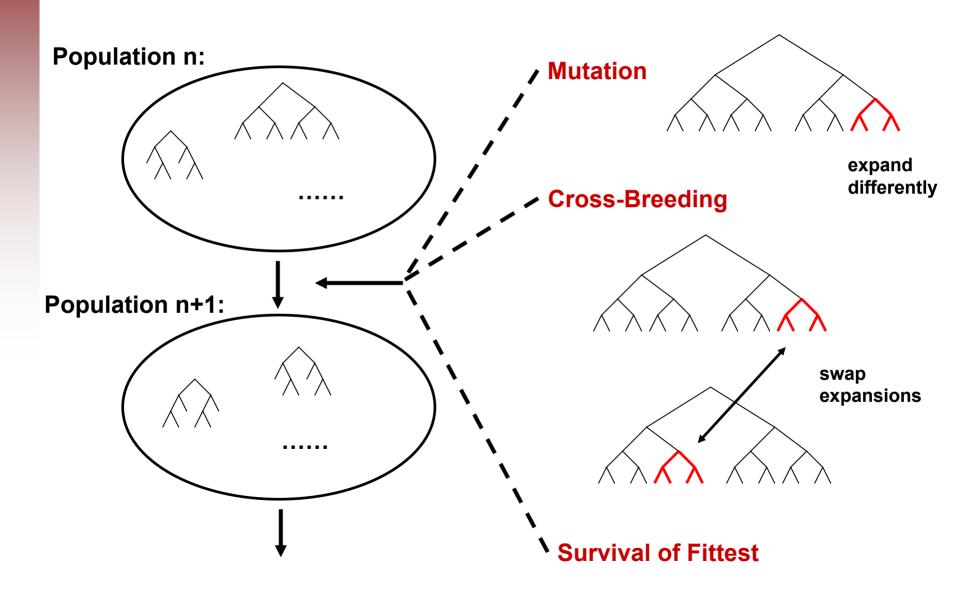
#### Operates with the ruletree representation of an algorithm

- transform independent
- efficient

#### Search Methods

- Exhaustive Search
- Dynamic Programming (DP)
- Random Search
- Hill Climbing
- STEER (an evolutionary algorithm)

### **STEER: Evolutionary Search**



### Learning

#### Procedure:

- Generate a set of (1000 say) algorithms and their runtimes (one transform, one size); represent algorithms by features
- From this data (pairs of features and runtimes), learn a set of algorithm design rules
- From this set, generate best algorithms (theory of Markov decision processes)

### Evaluation:

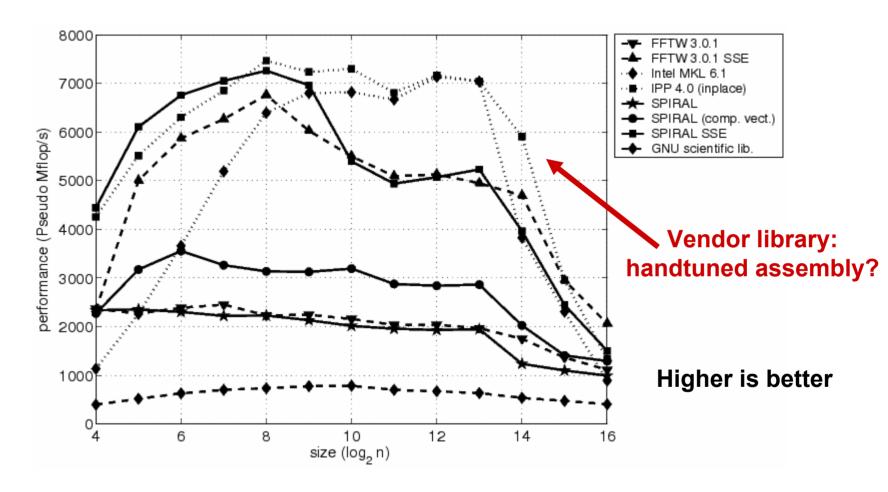
- Tested for WHT and DFT
- From data generated for one size (2<sup>15</sup>) could construct best algorithms across sizes (2<sup>12-2</sup>18)

Bryan Singer and Manuela Veloso Learning to Construct Fast Signal Processing Implementations Journal of Machine Learning Research, 2002, Vol. 3, pp. 887-919

## **Benchmarks**

## Benchmark: DFT, 2-powers

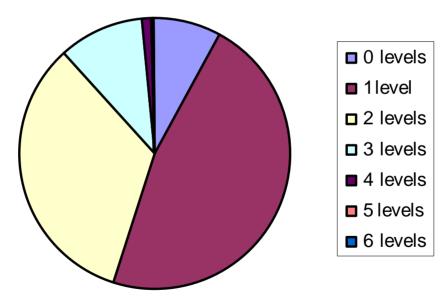
P4, 3.2 GHz, icc 8.0



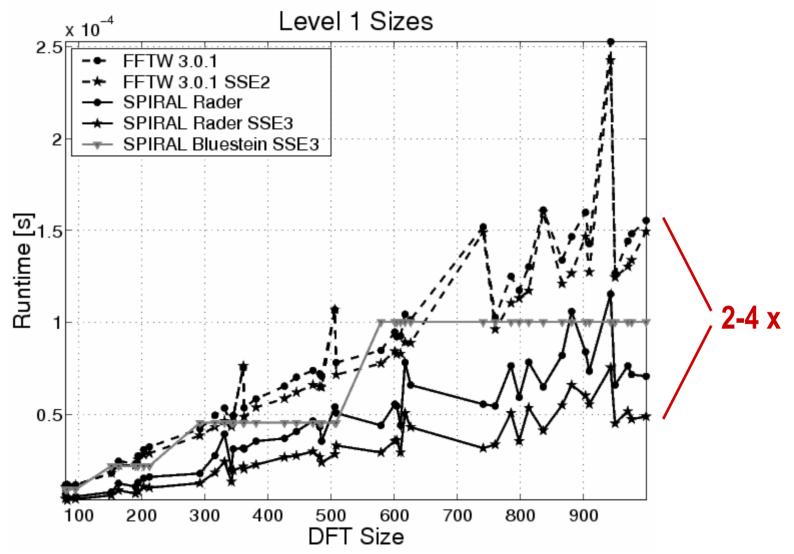
Single precision

# **Benchmark: DFT, Other Sizes**

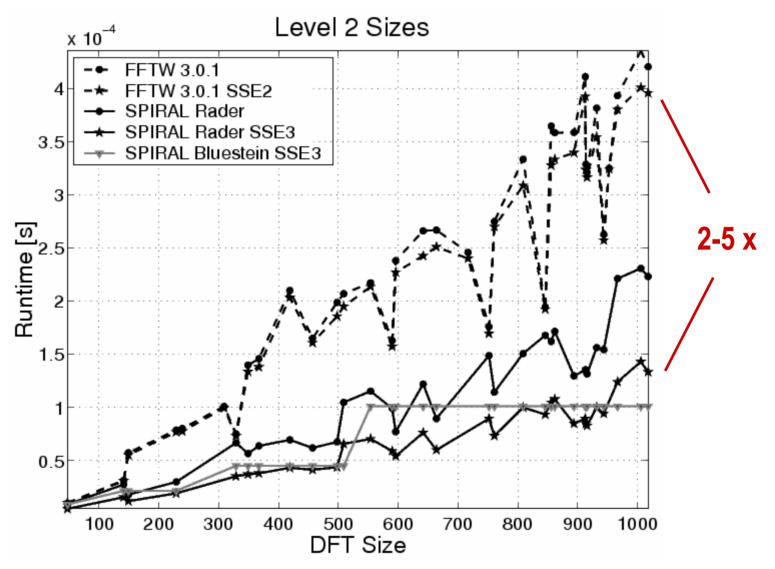
Divide sizes into levels by number of necessary Rader steps
 n < 8192</li>



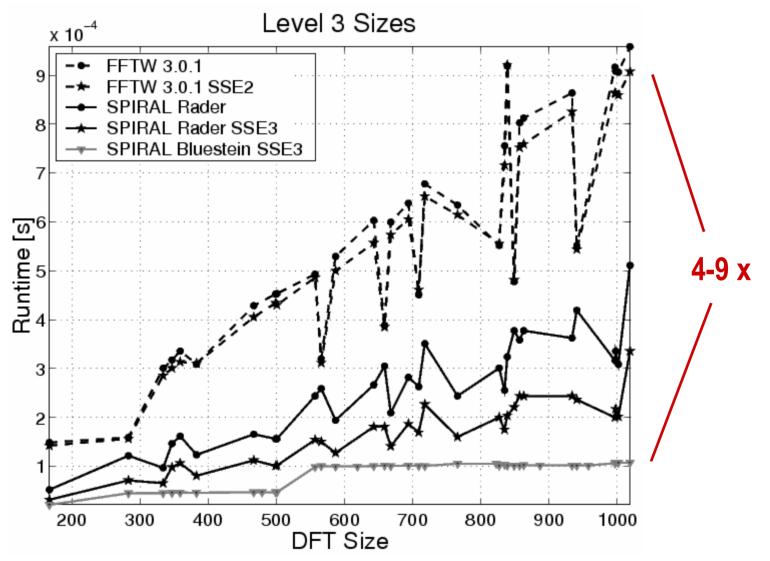
# **Benchmark: DFT, Level 1 Sizes**



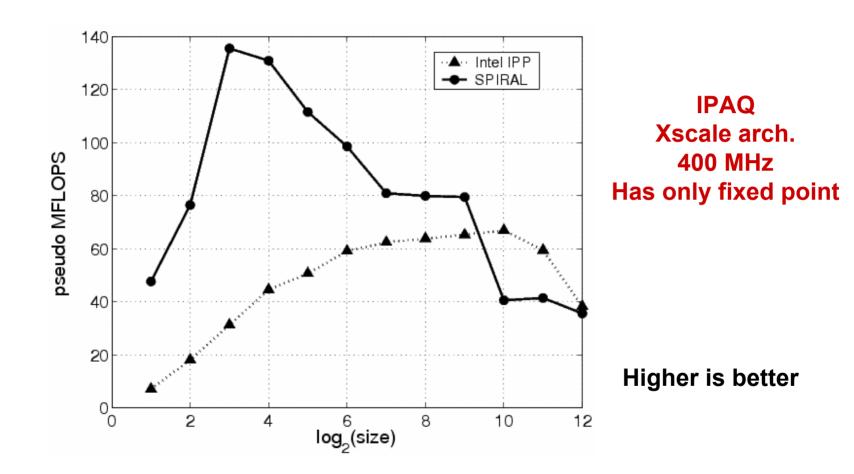
# **Benchmark: DFT, Level 2 Sizes**



# **Benchmark: DFT, Level 3 Sizes**



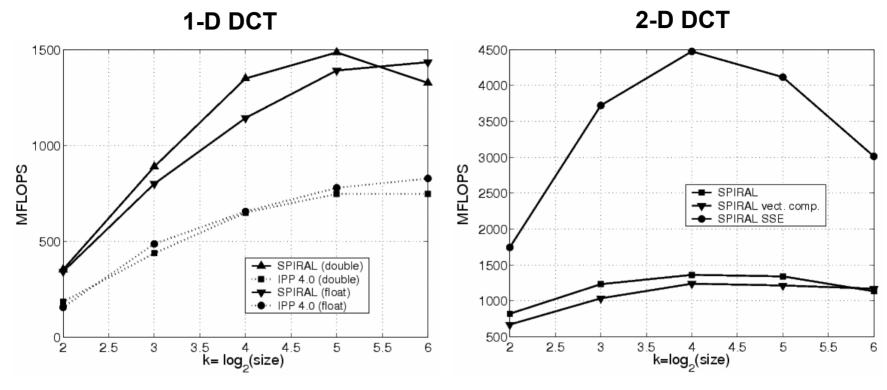
### **Benchmark: Fixed Point DFT, IPAQ**



Intel spent less effort?

### **Benchmark: DCT**

# P4, 3.2 GHz, icc 8.0

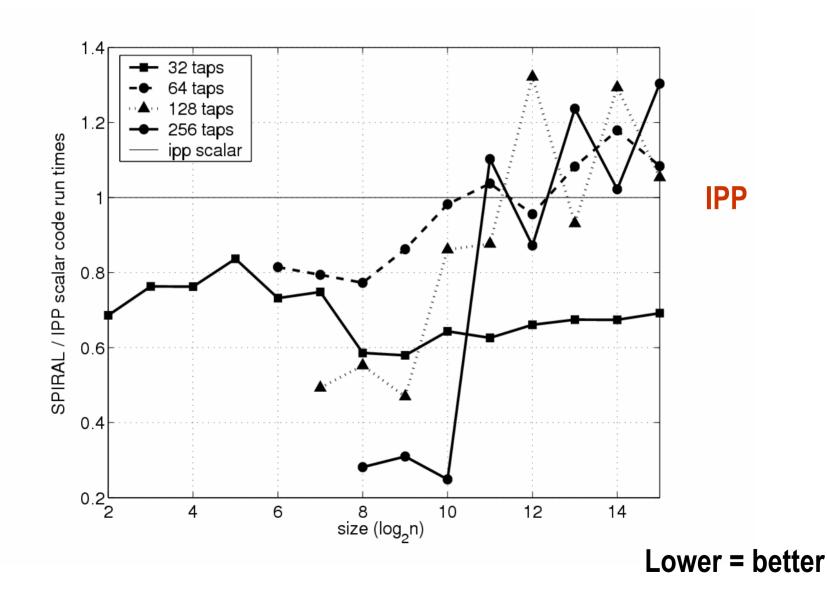


Scalar code

Scalar vs. SSE code

- This is not the latest IPP
- Spiral gains a factor of 2 to vendor library
- Another factor of 3 with 2D and vector instructions

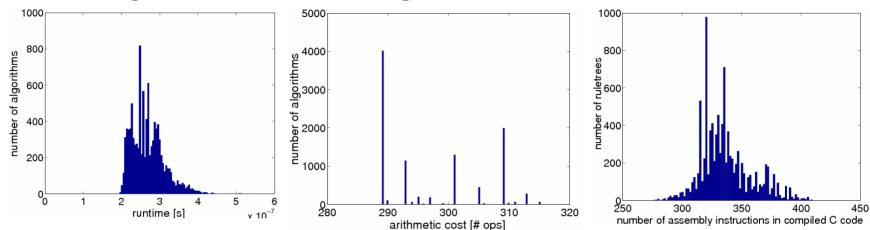
# **Benchmark: Filter (Relative to IPP)**



# **Instructive Experiments**

# Performance Spread: DCT, size 32 Histograms, 10,000 algorithms

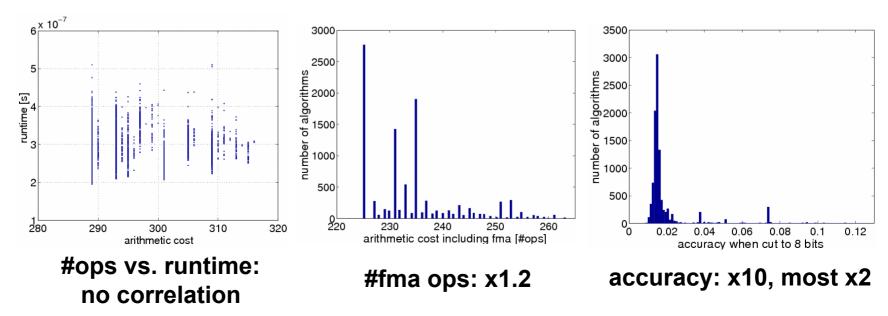
**Carnegie** Mellon



runtime: x2

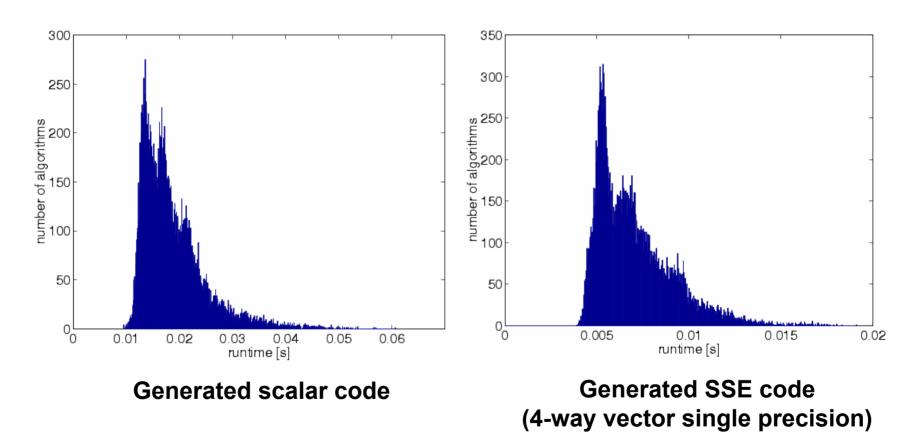
#ops: x1.08

#### #assembly instr: x1.5



# Performance Spread: DFT 2^16 Histograms, 20,000 Algorithms

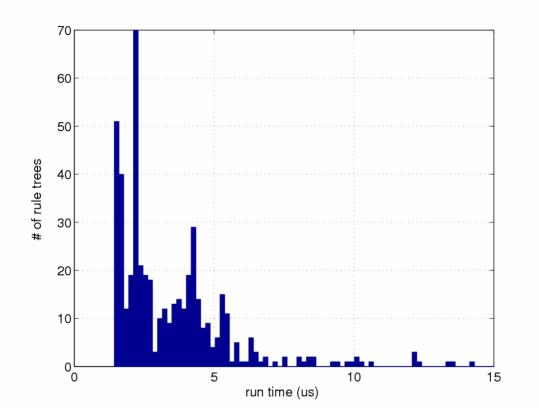
P4, 3.2 GHz, icc 8.0



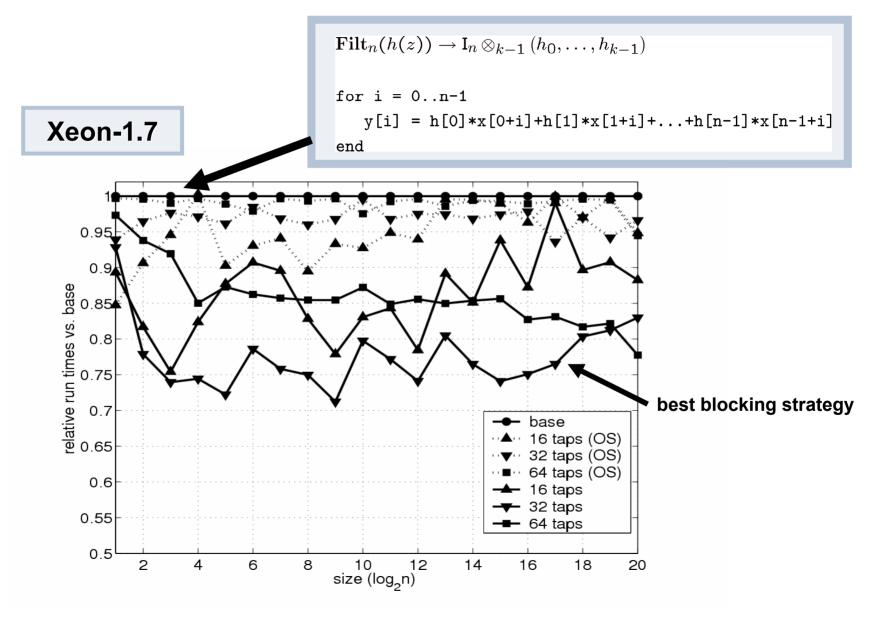
- Generality of vectorization (all algorithms improve)
- Efficiency of vectorization (x 2.5 gain)

# Performance Spread: Filter(128, 16)

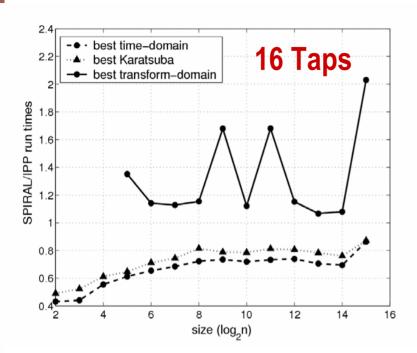
#### Pentium 4 – 3.2



# **Filter: Time Domain Methods**

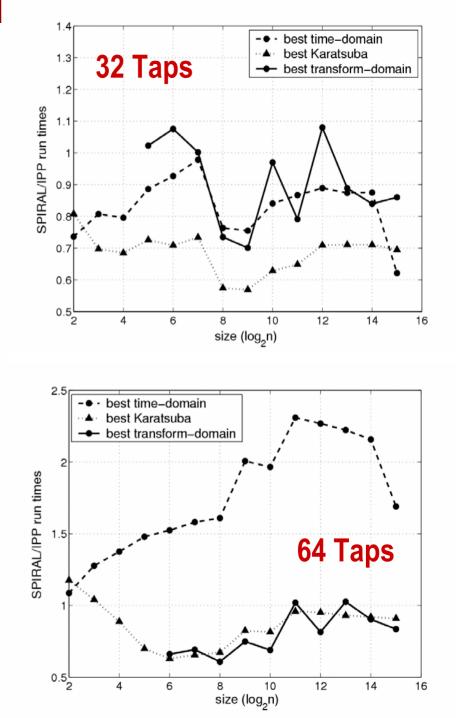


# **Filter: All Methods**

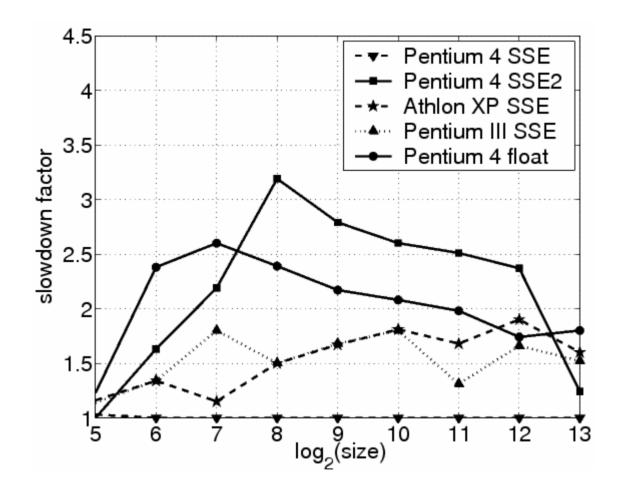


### Athlon XP 1.73

- 16: Time domain wins
- 32: Karatsuba wins
- · 64: Karatsuba/DFT ~equal



### **Platform Dependency: DFT**



#### 50% Loss by porting from PIII to P4

# **Platform Dependency: Filter**

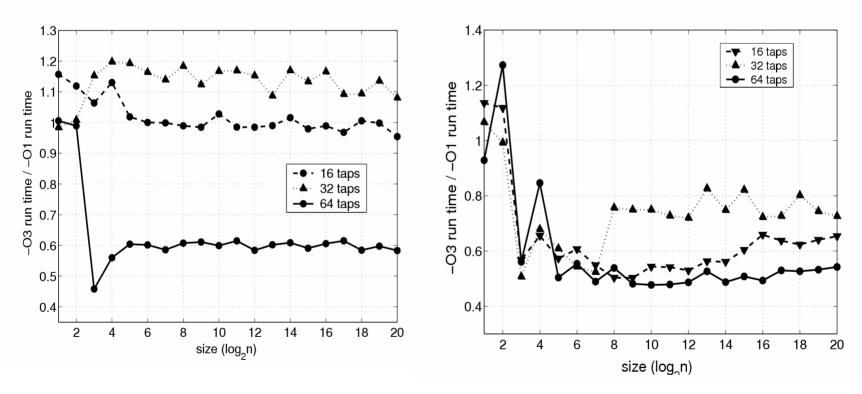
|                               | 16-tap                 | 32-tap    | 64-tap             | 128-tap |
|-------------------------------|------------------------|-----------|--------------------|---------|
| Pentium 4 3.0GHz<br>Northwood | Blocking               | Karatsuba | RDFT               | RDFT    |
| Pentium 4 3.6GHz<br>Prescott  | Blocking               | Karatsuba | Karatsuba          | RDFT    |
| Macintosh                     | Karatsuba              | Karatsuba | RDFT               | RDFT    |
| Xeon 1.7 GHz                  | Blocking               | Blocking  | Blocking           | RDFT    |
| Athlon 1.73GHz                | Karatsuba/<br>Blocking | Karatsuba | Karatsuba/<br>RDFT | RDFT    |

# **Compileroptions: Filter**

#### Macintosh - GNU C 3.3 (Apple)

#### **Blocking/nesting**

#### + Karatsuba

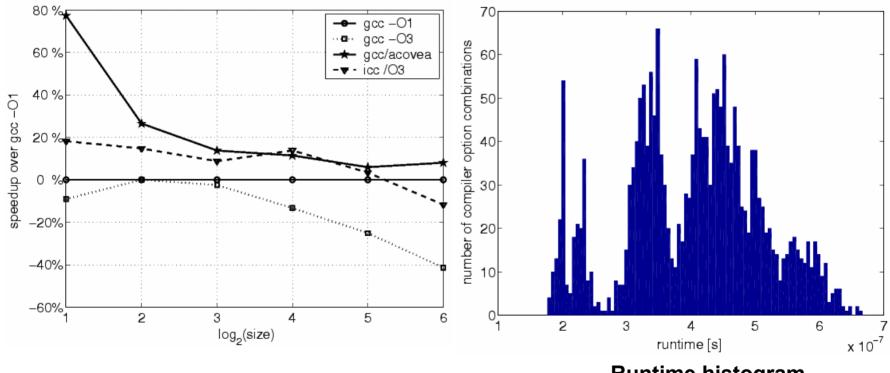


gcc {-01/-03} -fomit-frame-pointer -std=c99 -fast -mcpu=7450

## **Compileroptions DCT**

# P4, 3.2 GHz, gcc

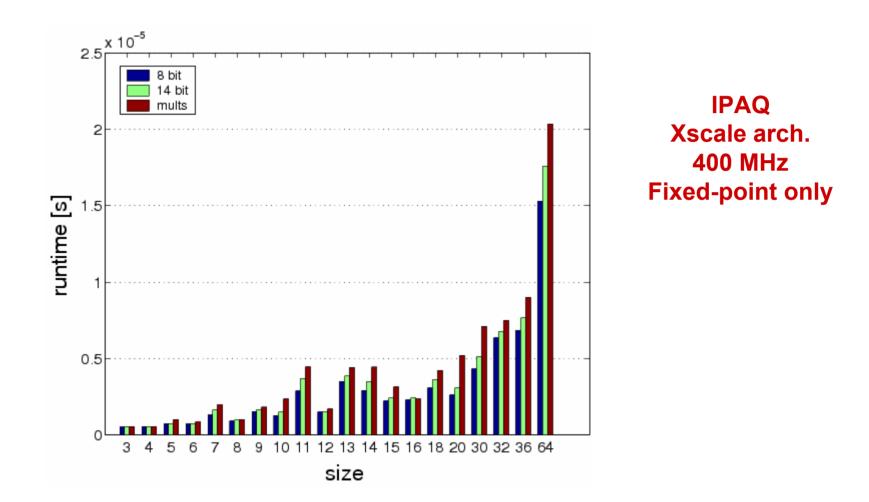
#### ACOVEA: Evolutionary search for best compiler flags (gcc has ~500)



Runtime histogram Random compiler flags incl. -O1 –march=pentium4

#### 10% improvement of best Spiral generated code

## **Multiplierless DFT, IPAQ**



- fixed-point constant multiplications replaced by adds and shifts
- trade-off runtime and precision

### Summary

Code generation and tuning as optimization problem over the algorithm and implementation space

Exploit the structure of the domain to solve it

Declarative framework for computer representation of the domainknowledge

> *Enables algorithm generation and optimization (teaches the system the math; does not become obsolete?)*

- Compiler to translate math description into code
- Search and learning to explore implementation space

Closes the feedback loop gives the system "intelligence"

Extensible, versatile

Every step in the code generation is exposed

### www.spiral.net