
Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005

24th and 25th Lecture Apr. 07 and 12, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

Research Projects
Presentations last week of April (26th and 28th)

We distribute the dates in the lecture on the 12th

Presentations 20 minutes + 5 minutes questions (~17-20 slides)

Research paper
Due April 20th, the only thing that may be missing are some (but not all)
experimental results
You’ll get feedback from me
Final version with feedback incorporated due one week after your
presentation

Remarks
Follow guide to benchmarking!
Try different sets of compiler flags to be sure
Do a cost analysis

The Problem Again

reasonable
implementation
(Numerical recipes.
GNU scientific library)

Intel vendor library
(hand-optimized
assembly code)
but also FFTW, SPIRAL
generated code

10x

DFT size

Writing fast numerical code is a tough problem

Moore’s Law
Moore’s Law: exponential (x2 in ~18 months) increase
number of transistors/chip

But everything has its price …

so
ur

ce
: S

cie
nt

ific
 A

m
er

ica
n,

 N
ov

 2
00

4,
 p

. 9
8

Moore’s Law: Consequences

Computers are very complex
multilevel memory hierarchy
special instruction sets beyond standard C programming model
undocumented hardware optimizations

Consequences:
Runtime depends only roughly on the operations
Runtime behavior is hard to understand
Compiler development can hardly keep track
The best code (and algorithm) is platform-dependent
It is very difficult to write really fast code

Computers evolve fast
Highly tuned code becomes obsolete almost as fast as it as written

It’ll get rather worse: Multicoresystems

Solution #1: Brute Force
Thousands of programmers hand-write and hand-tune
(assembly) code for the same numerical problems and for
every platform and whenever a new platform comes out?

Hmm…..
(but it’s current practice)

Solution #2: New Approaches to Code Optimization
and Code Creation

ATLAS: Code
generation/optimization for BLAS

SPARSITY/BeBop: Code
generation/optimization for
sparse linear algebra routines

FFTW: Self-adaptive DFT library +
DFT kernel generator

SPIRAL: Code
generation/optimization for linear
signal transforms

Proceedings of the IEEE special issue, Feb. 2005

Implementation
Level

Present

Algorithm
Level

Future

au
to

m
at

io
n

hu
m

an

a
u

t o
 m

 a
 t

i o
 n

Common Philosophy

a new breed of domain-aware approaches/tools
push automation beyond what is currently possible

applies for software and hardware design alike

one algorithm
and program

SPIRAL www.spiral.net

Team:
James C. Hoe (ECE, CMU)
Jeremy Johnson (CS, Drexel)
José M. F. Moura (ECE, CMU)
David Padua (CS, UIUC)
Markus Püschel (ECE, CMU)
Manuela Veloso (CS, CMU)
Robert W. Johnson (Quarry Comp. Inc.)
Christoph Überhuber (Math, TU Wien

Sponsors:
DARPA
NSF ACR-0234293
NSF ITR/NGS-0325687

and:
Cylab, CMU
Austrian Science Fund
Intel
ITRI, Taiwan
ENSCO, Inc. Students/PostDocs:

Bryan W. Singer (CS, CMU)
Jianxin Xiong (CS, UIUC)
Srinivas Chellappa (ECE, CMU)
Franz Franchetti (ECE, CMU, before TU Vienna)
Aca Gacic (ECE, CMU)
Yevgen Voronenko (ECE, CMU)
Anthony Breitzman (CS, Drexel)
Kang Chen (CS, Drexel)
Pinit Kumhom (ECE, Drexel)
Adam Zelinski (ECE, CMU)
Peter Tummeltshammer (CS, TU Vienna)
…

~40 Publications

Overview paper:

Markus Püschel, José M. F. Moura, Jeremy Johnson,
David Padua, Manuela Veloso, Bryan Singer, Jianxin
Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,
Kang Chen, Robert W. Johnson, and Nick Rizzolo,
SPIRAL: Code Generation for DSP Transforms,
Proceedings of the IEEE

Spiral
Code generation from scratch for linear digital signal
processing (DSP) transforms (DFT, DCT, DWT, filters, ….)

Automatic optimization and platform-tuning at the algorithmic
level and the code level

Different code types supported (scalar, vector, FMA, fixed-
point, multiplierless, …)

Goal: A flexible, extensible code generation framework
that can survive time (to whatever extent possible)
for an entire domain of algorithms

Research question: To what extent is it possible to abolish
handcoding and handoptimization?

Code Generation and Tuning as
Optimization Problem

a DSP transform to be implemented
the target platform
set of possible implementations of T on P

cost of implementation I of T on P

The implementation of T that is tuned to P is given by:

Problems:
• How to characterize and generate the set of implementations?
• How to efficiently minimize C?

Spiral exploits the domain-specific structure to
implement a solver for this optimization problem

Spiral’s architecture

Domain knowledge:
Generating algorithms & manipulating algorithms

Architecture knowledge:
by evaluating runtime

From Transform to Algorithm (Formula)

Input:
Transform specification

Output:
Fast algorithm as formula

Domain Knowledge I:

Generatin
g th

e algorith
m space

DSP Algorithms: Example 4-point DFT
Cooley/Tukey FFT (size 4):

mathematical notation exhibits structure:
SPL (signal processing language)
Suitable for computer representation
contains all information to generate code

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

1000
0010
0100
0001

1100
1100
0011
0011

000
0100
0010
0001

1010
0101
1010
0101

11
1111

11
1111

iii

ii

4
222

4
2224)()(LDFTITIDFTDFT ⋅⊗⋅⋅⊗=

Identity Permutation

Fourier transform Diagonal matrix (twiddles)

Kronecker product

SPL: Definition (BNF)
Description language for linear DSP algorithms
Definition (BNF):

Some Definitions:

DSP Algorithms: Spiral Terminology

Transform

Rule

Formula

() () PDFTIDIDFTDFT mnmnnm ⋅⊗⋅⋅⊗→

() ()() PFIIDIFDFT ⋅⊗⊗⋅⋅⊗= 222428

parameterized matrix

• a breakdown strategy
• product of sparse matrices

• recursive application of rules
• uniquely defines an algorithm
• efficient representation
• easy manipulation

8DFT

2

nDFT

Ruletree
DFT 4DFT

2DFT 2DFT

• few constructs and primitives
• uniquely defines an algorithm
• can be translated into code

Some Transforms

Spiral currently contains 36 transforms

Some Breakdown Rules

Spiral contains 100+ rules

Base case rules

Some Breakdown Rules for Filters

Aca Gacic, Automatic Implementation and Platform Adaptation of
Discrete Filtering and Wavelet Algorithms, Ph.D. thesis, Electrical
and Computer Engineering, Carnegie Mellon University, 2004

Formula- (Algorithm) generation

Ruletree:

Formula:

Transform:

(fast)
C Code:

Remaining task

(many possibilities)

Set of Algorithms
Given a transform:

Apply breakdown rules recursively until all occurring transforms are
expanded
Choice of rules at each step yields (usually) exponentially large algorithms
space:

about equal in operations count
differ in data flow

k

1
2
3
4
5
6
7
8
9

DFTs, size 2k

1
6

40
296

27744
162570361280
~1.01 • 10^27
~2.31 • 10^61

~2.86 • 10^133

DCT IV, size 2k

1
10

126
31242

1924443362
7343815121631354242

~1.07 • 10^38
~2.30 • 10^76

~1.06 • 10^153

From Algorithm (Formula) to Optimized Algorithm

Input:
Fast algorithm as formula

Output:
Optimized formula

Domain Knowledge II:

Optim
izin

g an algorith
m

Motivation: Loop Fusion
void I4xF2_L84(double *y, double *x) {

double t[8];
for (int i=0; i<8; i++)

t[i==7 ? 7 : (i*4)%7] = x[i];
for (int i=0; i<4; i++){

y[2*i] = t[2*i] + t[2*i+1];
y[2*i+1] = t[2*i] - t[2*i+1]; } }

void I4xF2_L84(double *y, double *x) {
for (int j=0; j<4; j++){

y[2*j] = x[j] + x[j+4];
y[2*j+1] = x[j] - x[j+4]; } }

direct
code generation

no compiler does that

Solution: Σ-SPL and
Formula manipulation

Formula Level Optimization

Main goals:
Fusing iterative steps (fusing loops), e.g., permutations with loops
Improving structure (data flow) for SIMD instructions

Overcomes compiler limitations

Formula manipulation through mathematical rules

Implemented using multiple levels of rewriting systems

Puts math knowledge into the system

Structure of Loop Optimization

To Σ-SPL

Join permutations

Join diagonals
and monomials

SPL formula

Σ -SPL formula

Σ -SPL formula

Σ -SPL formula

Rules:

Loop Fusion Beyond Cooley-Tukey
Main DFT recursion (breakdown rules):

rather cheap

expensive

very expensive

How to fuse permutations from different combinations of rules?

Example

Consider the DFT formula fragment

In Σ-SPL:

Cooley-Tukey Rader Good-Thomas

Complicated
array access

Example (cont’d)

After index function simplification:

Simplified
array access

Example (cont’d)

Generated Code

Vector code generation from SPL formulas
Naturally vectorizable construct

A

x y

4IA⊗
vector length

iiii

k

i
i QEIADP)(

1
υ⊗∏

=

Pi, Qi permutations
Di, Ei diagonals
Ai arbitrary formulas
ν SIMD vector length

(Current) generic construct completely vectorizable:

Vectorization in two steps:
1. Formula manipulation using manipulation rules
2. Code generation (vector code + C code)

Formula manipulation overcomes compiler limitations

Example DFT

Standard FFT

Vector FFT for ν-way vector instructions

Formula manipulation

Implementation of Formula Generation and
Manipulation

Implementation using a computer algebra system (GAP)

SPL/Σ-SPL implemented as recursive data types

Exact representation of sin(), cos(), etc.

Symbolic computation enables exact verification of rules

From Optimized Algorithm (Formula) to Code

Input:
Optimized formula

Output:
Intermediate Code

Straightforward

From Code to Optimized Code

Input:
Intermediate Code

Output:
Optimized C code

Code Level Optimizations

Precomputation of constants
Loop unrolling (controlled by search module)
Constant inlining
SSA code, scalar replacement, algebraic simplifications, CSE
Code reordering for locality (optional)
Conversion to FMA code (optional)
Conversion to fixed point code (optional)
Conversion to multiplierless code (optional)

Finally: Unparsing to C (or Fortran)

Conversion to FMA code

FMA (fused multiply-add) or MAC (multiply accumulate)
instructions: y = ±ax ± b

Extension of the instruction set + specialized execution units

As fast as a single add or multiply

Conversion of linear algorithms to FMA code: blackboard

Paper: Yevgen Voronenko and Markus Püschel
Automatic Generation of Implementations for DSP
Transforms on Fused Multiply-Add Architectures
Proc. (ICASSP) 2004

http://www.ece.cmu.edu/%7epueschel/publications.html#fma
http://www.ece.cmu.edu/%7epueschel/publications.html#fma

Evaluating Code

Input:
Optimized C code

Output:
Performance Number

Straightforward

Examples:
• runtime
• accuracy
• operations count

Search (Learning) for the Best

Input:
Performance Number

Output:
Controls Formula Generation
Controls Implementation Options

Search Methods

Search over:
Algorithmic degrees of freedom
(choice of breakdown rules)
Implementation degrees of freedom
(degree of unrolling)

Operates with the ruletree representation of an algorithm
transform independent
efficient

Search Methods
Exhaustive Search
Dynamic Programming (DP)
Random Search
Hill Climbing
STEER (an evolutionary algorithm)

STEER: Evolutionary Search

Population n:

Population n+1:

……

……

Mutation

Cross-Breeding
expand
differently

swap
expansions

Survival of Fittest

Learning

Procedure:
Generate a set of (1000 say) algorithms and their runtimes (one transform,
one size); represent algorithms by features
From this data (pairs of features and runtimes), learn a set of algorithm
design rules
From this set, generate best algorithms (theory of Markov decision
processes)

Evaluation:
Tested for WHT and DFT
From data generated for one size (2^15) could construct best algorithms
across sizes (2^12-2^18)

Bryan Singer and Manuela Veloso
Learning to Construct Fast Signal Processing Implementations
Journal of Machine Learning Research, 2002, Vol. 3, pp. 887-919

Benchmarks

Benchmark: DFT, 2-powers P4, 3.2 GHz,
icc 8.0

Higher is better

Vendor library:
handtuned assembly?

Single precision

Benchmark: DFT, Other Sizes

Divide sizes into levels by number of necessary Rader steps
n < 8192

0 levels
1 level
2 levels
3 levels
4 levels
5 levels
6 levels

Benchmark: DFT, Level 1 Sizes

2-4 x

Benchmark: DFT, Level 2 Sizes

2-5 x

Benchmark: DFT, Level 3 Sizes

4-9 x

Benchmark: Fixed Point DFT, IPAQ

Intel spent less effort?

IPAQ
Xscale arch.

400 MHz
Has only fixed point

Higher is better

Benchmark: DCT P4, 3.2 GHz,
icc 8.0

• This is not the latest IPP
• Spiral gains a factor of 2 to vendor library
• Another factor of 3 with 2D and vector instructions

1-D DCT 2-D DCT

Scalar code Scalar vs. SSE code

Benchmark: Filter (Relative to IPP)

IPP

Lower = better

Instructive Experiments

Performance Spread: DCT, size 32
Histograms, 10,000 algorithms

runtime: x2 #assembly instr: x1.5#ops: x1.08

#fma ops: x1.2#ops vs. runtime:
no correlation

accuracy: x10, most x2

P4, 3.2 GHz,
gcc

Performance Spread: DFT 2^16
Histograms, 20,000 Algorithms

• Generality of vectorization (all algorithms improve)
• Efficiency of vectorization (x 2.5 gain)

P4, 3.2 GHz,
icc 8.0

Generated scalar code Generated SSE code
(4-way vector single precision)

Performance Spread: Filter(128, 16)

Pentium 4 Pentium 4 –– 3.23.2

Filter: Time Domain Methods

XeonXeon--1.71.7

best blocking strategy

Filter: All Methods

Athlon XP 1.73

64 Taps

16 Taps

32 Taps

• 16: Time domain wins
• 32: Karatsuba wins
• 64: Karatsuba/DFT ~equal

Platform Dependency: DFT

50% Loss by porting from PIII to P4

Platform Dependency: Filter

16-tap 32-tap 64-tap 128-tap

RDFT

RDFT

RDFT

RDFT

RDFT

Pentium 4 3.0GHz
Northwood Blocking Karatsuba RDFT

Pentium 4 3.6GHz
Prescott Blocking Karatsuba Karatsuba

Macintosh Karatsuba Karatsuba RDFT

Xeon 1.7 GHz Blocking Blocking Blocking

Athlon 1.73GHz
Karatsuba/
Blocking

Karatsuba
Karatsuba/
RDFT

Compileroptions: Filter
Macintosh Macintosh -- GNU C 3.3 (Apple)GNU C 3.3 (Apple)

Blocking/nesting + Karatsuba

Compileroptions DCT
ACOVEA: Evolutionary search for best compiler flags (gcc has ~500)

P4, 3.2 GHz,
gcc

10% improvement of best Spiral generated code

Runtime histogram
Random compiler flags

incl. -O1 –march=pentium4

Multiplierless DFT, IPAQ

IPAQ
Xscale arch.

400 MHz
Fixed-point only

• fixed-point constant multiplications replaced by adds and shifts
• trade-off runtime and precision

Summary

Code generation and tuning as optimization problem over the algorithm
and implementation space

Exploit the structure of the domain to solve it
Declarative framework for computer representation of the domain-
knowledge

Enables algorithm generation and optimization
(teaches the system the math; does not become obsolete?)

Compiler to translate math description into code
Search and learning to explore implementation space

Closes the feedback loop
gives the system “intelligence”

Extensible, versatile
Every step in the code generation is exposed

www.spiral.net

	Algorithms and Computation in �Signal Processing�� special topic course 18-799B�spring 2005�24th and 25th Lecture Apr. 07 and
	Research Projects
	The Problem Again
	Moore’s Law
	Moore’s Law: Consequences
	Solution #1: Brute Force
	Solution #2: New Approaches to Code Optimization and Code Creation
	Common Philosophy
	SPIRAL
	Spiral
	Code Generation and Tuning as �Optimization Problem
	Spiral’s architecture
	From Transform to Algorithm (Formula)
	DSP Algorithms: Example 4-point DFT
	SPL: Definition (BNF)
	DSP Algorithms: Spiral Terminology
	Some Transforms
	Some Breakdown Rules
	Some Breakdown Rules for Filters
	Formula- (Algorithm) generation
	Set of Algorithms
	From Algorithm (Formula) to Optimized Algorithm
	Motivation: Loop Fusion
	Formula Level Optimization
	Structure of Loop Optimization
	Loop Fusion Beyond Cooley-Tukey
	Example
	Example (cont’d)
	Example (cont’d)
	Vector code generation from SPL formulas
	Example DFT
	Implementation of Formula Generation and Manipulation
	From Optimized Algorithm (Formula) to Code
	From Code to Optimized Code
	Code Level Optimizations
	Conversion to FMA code
	Evaluating Code
	Search (Learning) for the Best
	Search Methods
	STEER: Evolutionary Search
	Learning
	Benchmarks
	Benchmark: DFT, 2-powers
	Benchmark: DFT, Other Sizes
	Benchmark: DFT, Level 1 Sizes
	Benchmark: DFT, Level 2 Sizes
	Benchmark: DFT, Level 3 Sizes
	Benchmark: Fixed Point DFT, IPAQ
	Benchmark: DCT
	Benchmark: Filter (Relative to IPP)
	Instructive Experiments
	Performance Spread: DCT, size 32�Histograms, 10,000 algorithms
	Performance Spread: DFT 2^16�Histograms, 20,000 Algorithms
	Performance Spread: Filter(128, 16)
	Filter: Time Domain Methods
	Filter: All Methods
	Platform Dependency: DFT
	Platform Dependency: Filter
	Compileroptions: Filter
	Compileroptions DCT
	Multiplierless DFT, IPAQ
	Summary

