Algorithms and Computation in Signal Processing

special topic course 18-799B spring 2005 10th Lecture Feb. 10, 2005

Instructor: Markus Pueschel TA: Srinivas Chellappa

Discrete Signal Transforms

Signal Transforms

Mathematically: Matrix-vector multiplication

$$\begin{array}{c} x \mapsto y = M \cdot x \\ \text{Input vector (signal)} \\ \text{Output vector (signal)} \\ \end{array} \begin{array}{c} x \mapsto y = M \cdot x \\ \uparrow \\ \text{Transform = a fixed matrix} \end{array}$$

Is often written like that:

$$y_k = \sum_{\ell=0}^{n-1} m_{k,\ell} x_\ell, \quad M = [m_{k,\ell}]_{0 \le k,\ell < n}$$

Idea behind transforms: represent signal in other basis which enables better manipulation

Transforms: Examples

$$\begin{aligned} \mathbf{DFT}_n &= \left[e^{-2k\ell\pi i/n}\right]_{0\leq k,\ell < n} \\ \mathbf{DCT-2}_n &= \left[\cos(k(2\ell+1)\pi/2n)\right]_{0\leq k,\ell < n}, \\ \mathbf{DCT-3}_n &= \mathbf{DCT-2}_n^T \quad (\text{transpose}), \\ \mathbf{DCT-4}_n &= \left[\cos((2k+1)(2\ell+1)\pi/4n)\right]_{0\leq k,\ell < n}, \\ \mathbf{IMDCT}_n &= \left[\cos((2k+1)(2\ell+1+n)\pi/4n)\right]_{0\leq k<2n,0\leq \ell < n}, \\ \mathbf{RDFT}_n &= \left[r_{k\ell}\right]_{0\leq k,\ell < n}, \quad r_{k\ell} = \begin{cases} \cos\frac{2\pi k\ell}{n}, \quad k \leq \lfloor \frac{n}{2} \rfloor \\ -\sin\frac{2\pi k\ell}{n}, \quad k > \lfloor \frac{n}{2} \rfloor, \\ -\sin\frac{2\pi k\ell}{n}, \quad k > \lfloor \frac{n}{2} \rfloor, \end{cases} \\ \mathbf{WHT}_n &= \begin{bmatrix} \mathbf{WHT}_{n/2} \quad \mathbf{WHT}_{n/2} \\ \mathbf{WHT}_{n/2} \quad -\mathbf{WHT}_{n/2} \end{bmatrix}, \quad \mathbf{WHT}_2 = \mathbf{DFT}_2, \\ \mathbf{DHT} &= \left[\cos(2k\ell\pi/n) + \sin(2k\ell\pi/n)\right]_{0\leq k,\ell < n}. \end{aligned}$$

Fast Algorithms

Transforms by definition: O(n²)

Transforms have fast algorithm, typically: O(n log(n))

Example: DFT and FFT (fast Fourier transform)

These fast algorithms exist because of "symmetries" or "redundancy" in the matrix (however, the connection is not straightforward)

The History of Fast Transform Algorithms ...

... starts with the FFT

The advent of digital signal processing is often attributed to the FFT (Cooley-Tukey 1965)

History:

- ~1805: FFT discovered by Gauss (nach [1]) (Fourier publishes the concept of Fourier analysis in 1807!)
- 1965: Rediscovered by Cooley-Tukey
- 2002: James W. Cooley receives the IEEE Jack S. Kilby Signal Processing Medal "For pioneering the Fast Fourier Transform (FFT) algorithm."

[1]: Heideman, Johnson, Burrus: "Gauss and the History of the Fast Fourier Transform" Arch. Hist. Sc. 34(3) 1985

Carl-Friedrich Gauss

1777 - 1855

- Contender for the greatest mathematician of all times
- Some contributions: Least square analysis, normal distribution, fundamental theorem of algebra, Gauss elimination, Gauss quadrature, Gauss-Seidel, non-euclidean geometry, ...

How are Transform Algorithms Being Found?

Staring at the matrix for a long time

Example: Cooley-Tukey FFT

Other Example: G. Bi "Fast Algorithms for the Type-III DCT of Composite Sequence Lengths" IEEE Trans. SP 47(7) 1999 <u>link</u>

Representation of Transform Algorithms

Representation of algorithms: two schools

- Sequence of summations
- Structured matrix factorization: $M = M_1 \cdot M_2 \dots M_k$

Example Bi's algorithm:

 $\mathsf{DCT}_n = K_m^n (\bigoplus_{0 \le i < k} \mathsf{DCT}_m(r_i)) (\mathsf{DCT}_k \otimes I_m) B_{n,k}$

Example Cooley-Tukey FFT: What is Better?

This?:

$$\mathsf{DFT}_n = L_{n_2}^n(I_{n_1} \otimes \mathsf{DFT}_{n_2})T_{n_1}^n(\mathsf{DFT}_{n_1} \otimes I_{n_2})$$

Or this?:
$$k = n_1k_1 + k_2, \ j = n_2j_1 + j_2$$

$$y_{n_2j_1+j_2} = \sum_{k_1=0}^{n_1-1} \left(\omega_n^{j_2k_1}\right) \left(\sum_{k_2=0}^{n_2-1} x_{n_1k_2+k_1} \omega_{n_2}^{j_2k_2}\right) \omega_{n_1}^{j_1k_1}$$

FFT References

- Nussbaumer (1982): Fast Fourier Transforms and Convolution Algorithms
- Van Loan (1992): Computational Frameworks for the Fast Fourier Transform
- Clausen/Baum (1993): Fast Fourier Transforms
- Tolimieri/An/Lu (1997): Algorithms for discrete Fourier transform and convolution