# 18-799 Algorithms and Computation in Signal Processing 

Spring 2005
Assignment 1
Due Date: Jan. 25th 1:30pm (before or in class)

1. (9 pts) Show that the following identities hold by determining the explicit constants $c$ and $n_{0}$ that are a part of the definition of O .
(a) $n+1=O(n)$
(b) $n^{3}+a n^{2}+b n+c=O\left(n^{3}\right)$
(c) $n^{5}=O\left(n^{\log _{2} n}\right)$
2. (16 pts)
(i) In the first class, you learned that $\Theta\left(\log _{a} n\right)=\Theta\left(\log _{b} n\right)$ for $a, b>1$. Does $\Theta\left(a^{n}\right)=\Theta\left(b^{n}\right)$ hold? Justify your answer.
(ii) Prove or disprove: $2^{2 n}=O\left(2^{n}\right)$.
(iii) Show that for $k>0, \alpha>1: n^{k}=O\left(\alpha^{n}\right)$ (i.e., polynomial functions grow slower than exponential functions).
(iv) Find a function $f(n)$ such that $f(n)=O(1), f(n)>0$ for all $n$, and $f(n) \neq \Theta(1)$. Justify the answer.
3. (21 pts) Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible. Justify your answers.
(a) $T(n)=2 T(n / 2)+n^{3}$.
(b) $T(n)=T(9 n / 10)+n$.
(c) $T(n)=16 T(n / 4)+n^{2}$.
(d) $T(n)=7 T(n / 3)+n^{2}$.
(e) $T(n)=7 T(n / 2)+n^{2}$.
(f) $T(n)=2 T(n / 4)+\sqrt{n}$.
(g) $T(n)=4 T(n / 2)+n^{2} \log n$.
4. (24 pts) Compute the exact (arithmetic) cost

$$
C(n)=(\text { number of adds, number of mults })
$$

of the Karatsuba algorithm, recursively applied, for the multiplication of the polynomials:

$$
h(x)=h_{n-1} x^{n-1}+\ldots+h_{0}, \quad p(x)=p_{n-1} x^{n-1}+\ldots+p_{0}
$$

assuming $n=2^{k}$.
Extension to 4 (Extra Credit Problem, 20 pts): Now compute the exact (arithmetic) cost

$$
C(m, n)=(\text { number of adds, number of mults })
$$

in the more general case

$$
h(x)=h_{m-1} x^{m-1}+\ldots+h_{0}, \quad p(x)=p_{n-1} x^{n-1}+\ldots+p_{0}
$$

assuming $n=2^{k}, m=2^{\ell}, m \leq n$.
5. (30 pts) Solve the recurrence $f_{0}=1, f_{1}=1, f_{n}=f_{n-1}+2 f_{n-2}$, using the method of generating functions.

