18-799 Algorithms and Computation in Signal Processing

Spring 2005

Assignment 1

Due Date: Jan. 25th 1:30pm (before or in class)

- 1. (9 pts) Show that the following identities hold by determining the explicit constants c and n_0 that are a part of the definition of O.
 - (a) n+1 = O(n)
 - (b) $n^3 + an^2 + bn + c = O(n^3)$
 - (c) $n^5 = O(n^{\log_2 n})$

2. (16 pts)

- (i) In the first class, you learned that $\Theta(log_a n) = \Theta(log_b n)$ for a, b > 1. Does $\Theta(a^n) = \Theta(b^n)$ hold? Justify your answer.
- (ii) Prove or disprove: $2^{2n} = O(2^n)$.
- (iii) Show that for k > 0, $\alpha > 1$: $n^k = O(\alpha^n)$ (i.e., polynomial functions grow slower than exponential functions).
- (iv) Find a function f(n) such that f(n) = O(1), f(n) > 0 for all n, and $f(n) \neq \Theta(1)$. Justify the answer.
- 3. (21 pts) Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 2$. Make your bounds as tight as possible. Justify your answers.
 - (a) $T(n) = 2T(n/2) + n^3$.
 - (b) T(n) = T(9n/10) + n.
 - (c) $T(n) = 16T(n/4) + n^2$.
 - (d) $T(n) = 7T(n/3) + n^2$.
 - (e) $T(n) = 7T(n/2) + n^2$.
 - (f) $T(n) = 2T(n/4) + \sqrt{n}$.
 - (g) $T(n) = 4T(n/2) + n^2 \log n$.
- 4. (24 pts) Compute the exact (arithmetic) cost

C(n) =(number of adds, number of mults)

of the Karatsuba algorithm, recursively applied, for the multiplication of the polynomials:

$$h(x) = h_{n-1}x^{n-1} + \dots + h_0, \quad p(x) = p_{n-1}x^{n-1} + \dots + p_0,$$

assuming $n = 2^k$.

Extension to 4 (Extra Credit Problem, 20 pts): Now compute the exact (arithmetic) cost

C(m, n) =(number of adds, number of mults)

in the more general case

$$h(x) = h_{m-1}x^{m-1} + \dots + h_0, \quad p(x) = p_{n-1}x^{n-1} + \dots + p_0,$$

assuming $n = 2^k$, $m = 2^\ell$, $m \le n$.

5. (30 pts) Solve the recurrence $f_0 = 1$, $f_1 = 1$, $f_n = f_{n-1} + 2f_{n-2}$, using the method of generating functions.