
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
24th Lecture, Apr. 14th

Guest Lecturer: Daniel McFarlin

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

How to Write Fast “High-Level” Code

Carnegie Mellon

Productivity VS. Performance

 Tradeoffs

 Agility vs. Robustness

 Continuum of PLs

 New PL “Sweetspot”

 OpenMP C/Fortran
 Chapel, Fortress, X10

 Hybrid Systems

Carnegie Mellon

Hybrid Systems

 Interfacing High-Level Languages

with High-Performance libraries

 A Brief HLL History

 HLL Implementations

 Programmatic Interfaces

 Best Practices

 Case Study

Carnegie Mellon

A Brief History of High Level Languages

 Both Octave and MATLAB were

designed in the 80’s as high level

interfaces to LINPACK

 Fundamental datatype is the matrix

 Syntactically similar

 Near mutual compatibility

(syntactic sugar/toolkits)

Carnegie Mellon

HLL Implementations

 Interpreters that traverse

the AST representation of the input

 May have to “pointer-chase” through AST data structure

 MATLAB operates on a linearizedopcode representation
which is JIT compiled

 Operations on C/C++ fundamental type:
mxArray/octave_value

 Use hash tables to maintain identifiers

Carnegie Mellon

Implementations continued…

 Most overhead associated with:
 run-time type identification

 boxing/unboxing

 operator overloading

 identifier resolution

 garbage collection

 A * B → mult(A,B) → mm_mult(unbox(A), unbox(B))

→ gemm(A,B)

 Most functionality embedded in library calls
(MATLAB/Octave or BLAS/LAPACK etc)

Carnegie Mellon

MATLAB Best Practices
 Pre-allocate (zeros, cell, matrix)

 Select appropriate intrinsic type

 Prefer vector constructs over looping

 Avoid global

 Avoid dangling-reference induced memory leaks

 Avoid excessive branching and input argument
modification

 Use in-place functions

Carnegie Mellon

Profiling MATLAB

 Initial MATLAB implementation

 Use tic and toc for coarse grain wallclock timing

 Use cputime for finer grain timing measurements

 Use MATLAB profiler for gprof-like profiling information

Carnegie Mellon

MATLAB Profiler DEMO

Carnegie Mellon

Interfaces

 Identified hotspot(s)

 Optimized MATLAB implementation

 Want to incorporate optimized “low-level” code
 Compiler (Catalytic, Polaris, ParaM, Star-P)

Carnegie Mellon

What about the MATLAB compiler, mcc?

 Once upon a time….
 Could actually see mxArray manipulations

 Or ... at least library calls with mxArray inputs

 Now used for portable deployment
 Embed M-code in exe

 Embed JIT-accelerator, interpreter and support libraries into exe

 Result: no speedup

 Can still auto-generate header file for external functions
 Use %#external

 Static linkage of external functions

Carnegie Mellon

Interfaces…

 Incorporate optimized C/C++ code directly into the
interpreter (Octave only)
 Source code is fairly readable

 MEX/Octfile
 Octave now supports the MEX interface

 DLLs loaded at call time

 Explicitly box/unbox input/output arguments

 All of your C/C++ optimization knowledge is useful but…

 Must be aware of DLL interface pitfalls

Carnegie Mellon

Interface pitfalls
 Underlying DLL overhead

 Mostly unavoidable but there is extensive documentation on how
to extract some performance improvement (Drepper 2006)

 MATLAB/Octave DLL function calls are about two orders
of magnitude slower than C function calls
 Argument resolution/unboxing

 Determining which function to call (.m or DLL)

 Possibly reloading or unloading the DLL

 Bottom Line: push all functionality into a single DLL
 Ideally into a single function

 MATLAB Limitation: only one function per DLL

 Octave: any number of functions but have to use symlinks to
because DLLs are opened based on name

 Avoid calling DLL functions in loops

Carnegie Mellon

MEX File Optimizations

 Slab Allocations
 Requires logic and state in the library

 Input argument mangling
 Semi-endorsed by Mathworks

Carnegie Mellon

Case Study: Synthetic Aperture Radar

 Interpolate.m vs. interpolaton55.c
 Partial loop unrolling

 Computer generated vectorization

 Loop merging

 Iteration space transposition

Carnegie Mellon

References

 http://www.youtube.com/watch?v=lDPLy7MyDMY

 http://people.redhat.com/drepper/dsohowto.pdf

 http://blogs.mathworks.com/loren/

http://www.youtube.com/watch?v=lDPLy7MyDMY
http://people.redhat.com/drepper/dsohowto.pdf

Carnegie Mellon

Allocation Example
function w = test()

x = [1:16];

%% allocation

y = zeros(16,1);

z = zeros(16,1);

w = zeros(16,1);

n = 4;

m = 4;

for i=1:4,

for j=1:4,

y(i + 4*(j-1)) = x(4*(i-1) + j);

end

end

y

z(1:1:4) = y(1:1:4);

for i=2:4,

z((i-1)*n+1:1:(i-1)*n+n) = y((i-1)*n+1:1:(i-1)*n+n);

end

z

w(1:n:n*(m-1)) = z(1:n:n*(m-1));

w

for i=2:4,

w((i):n:(i)+n*(m-1)) = z((i):n:(i)+n*(m-1));

End

Carnegie Mellon

Internal vs. External Looping
function [L,ierr] = Chol(A);

[n,n] = size(A);

ierr = 0;

%

for k = 1:n,

%

% exit if A is not positive definite

%

if (A(k,k) <= 0), ierr = k; return; end

%

% Compute main diagonal elt. and then scale the k-th column

%

A(k,k) = sqrt(A(k,k));

A(k+1:n,k) = A(k+1:n,k)/A(k,k);

%

% Update lower triangle of the trailing (n-k) by (n-k) block

%

for j = k+1:n,

A(j:n,j) = A(j:n,j) - A(j:n,k)*A(j,k);

end

end

L = tril(A);

