
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
20th Lecture, Mar. 31st

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Introduction

 Parallelism: definition
 Carrying instructions out simultaneously

 (Think multi-core)

 Why parallelism?
 Duh (if you can make it faster, why not?)

 More importantly: not many other options now

 Why not parallelism?
 Difficult to build hardware

 Difficult to program

 Not intuitive to humans

 No clear hardware or software model

 Application specific

Carnegie Mellon

Lecture overview

 Introduction / Background

 Parallel platforms / hardware paradigms

 Parallel software paradigms

 Mapping algorithms to parallel platforms

 SIMD homework feedback

 Administrative stuff
 Feedback form

 Schedule project meetings

Carnegie Mellon

Parallelism: motivation

 Idea has been around for a
while. Why now?

 Frequency scaling no longer
an option

 We’re forced to parallelism

 Think Intel/AMD multi-
cores

Future (now) will be driven by parallelism

Carnegie Mellon

Parallel Programming

Archs:

SMP

Cluster

Multi-core

SIMD

FPGA

Paradigms:

Data parallel

Task parallel

Streaming

EPIC

Problem

+

parallel

algorithms

Carnegie Mellon

Parallel Architectures

 Parallelism: one size doesn’t fit all
 SMP (symmetric multiprocessing): smaller CPUs

 Multi-core

 Multi-CPU, Hybrids, FPGAs etc.

 Distributed/NUMA: larger systems

 Cluster (including grid computing)

 Supercomputers

 Other types:

 SIMD: fine-grained parallelism

 Stream computing: pipelined parallelism

 Instruction level parallelism
(VLIW/EPIC/superscalar)

Carnegie Mellon

Parallel Architectures - Constraints

 SMP:
 Easy to program

 System complexity is pushed to hardware
design

 Coherency protocols

 Scalability

Shared Memory

Core1

$

Core2

$

Core3

$

Core4

$

 Distributed computing:
 Can never match SMP’s node-to-node data transfer

capability

 Hardware architecture scales very well

 Commodity hardware

 Grid computing (“virtual supercomputers” built out
of untrusted, unreliable nodes)

 Programmer burden is higher

Node1 Node2

Node4Node3

Network

Carnegie Mellon

Solving a Problem in Parallel

 So far, we’ve looked at parallel architectures
 To solve problems in parallel, we must identify and extract

parallelism out of problems

 Question 1: does it make sense to parallelize?
 Amdahl’s law: predict theoretical maximum speedup

 Question 2: what is the target platform/arch?
 Does the problem “fit” the architecture well?

Carnegie Mellon

Parallel Paradigms

 Task parallelism
 Distribute execution processes across computing nodes

 Data parallelism
 Distribute chunks of data across computing nodes

 Many real-world problems lie on the continuum

 Other models: streaming
 Sequential tasks performed on the same data

 Pipelined parallelism

 Eg: DVD decoding

Carnegie Mellon

Mapping problems to machines

Challenge: To map the problem
to the architecture using
abstractions

 Some problems match some
architectures better

Archs:

SMP

Cluster

Multi-core

SIMD

FPGA

Paradigms:

Data parallel

Task parallel

Streaming

EPIC

Problem

+

parallel

algorithms

You!

Given

Use these

“Fit” to:

Carnegie Mellon

Case studies

“Heavy metal”

 Clusters

 BlueGene/P (Supercomputer)

Desktop

 Future Intel (Nehalem)

 GPU (Graphics Processing Unit)

 Hybrid/accelerated (CPU+GPU+FPGA)

 Cell Broadband Engine

Carnegie Mellon

Cluster Computing

 Designed for:

 Supercomputing applications

 High availability (redundant nodes)

 Load balancing

 Architecture

 Multiple nodes connected by fast local area networks

 Can use COTS nodes

 Peak performance

 100 Teraflop/s (Cluster Platform 3000. 14,000 Intel Xeons!)

 How to program

 Specific to each cluster

 Notes

 Power/heat concerns

 Most supercomputers, grids

Carnegie Mellon

BlueGene/P: Cluster Supercomputer

 IBM’s supercomputer in the making

 Architecture
 PowerPC based

 High-speed 3D toroidal network

 Dual processors per node

 Peak performance
 Designed for upto 1 Petaflop/s

 32,000 cpus for 111 Teraflop/s

 Features
 Scalable in increments of 1024 nodes

Carnegie Mellon

Future Intel: Nehalem

 Designed for:
 Desktop/mainstream computing

 Servers

 Successor to Intel’s “Core” architecture

 (2008-09)

 Microarchitecture
 Your standard parallel CPU of the future

 1-8 cores native (single die)

 Out-of-order

 8MB on-chip L3 cache

 Hyperthreading

Carnegie Mellon

Intel Nehalem

 Peak performance
 ~ 100 Gflop/s (excluding GPU)

 Features
 45nm

 SSE4

 Intergrated Northbridge (combat memory wall)

 GPU on chip (off-die)

 Programming:
 Not very different from current CPUs

 Notes
 AMD + ATI = something similar

 What next?

Carnegie Mellon

GPU (Graphics Processing Unit)

 Designed for:
 Originally/largely: graphics rendering

 Also: as a massive floating-point compute unit. General Purpose
GPU (GPGPU)

 Microarchitecture
 Multiple “Shader units”: vertex/geometry/pixel

 Typically a PCI/PCIe card

 Can be on-chip

 Peak performance
 0.5 – 1 TeraFlop/s

Carnegie Mellon

GPU

 Programming
 Programmable shader units designed for matrix/vector operations

 Stream processing

 Grid computing (ATI / Folding@Home)

 Notes
 Numeric computation only

 Shipping data from and to destination (main memory)

Carnegie Mellon

Cell Broadband Engine (“Cell”)

 Designed for:
 Heavy desktop numeric computing

 General purpose

 Gaming / heavy multimedia vector processing

 Supercomputer node

 Bridge gap: desktop and GPU

 Microarchitecture
 Hybrid multi-core CPU

 1 PPE (general-purpose core)

 8 SPEs (specialized vector cores)

 Core Interconnect

 Peak performance
 ~ 230 Gflop/s (3.2GHz, using all 9 cores)

 204.8 Gflop/s (3.2GHz, using just the SPEs)

Carnegie Mellon

Cell BE

 PPE (Power Processor Element) x1

 Power architecture based

 Out-of-order , dual-threaded core

 For general purpose computing (OS)

 32+32KB L1, 512KB L2

 AltiVec vector unit

 Synergistic Processing Elements x8

 For numeric computing

 Dual-pipelined

 256kb “Local Stores” – 1 per SPE

 Interconnect: EIB – (SPE Interconnect Bus)

 Explicit DMA instead of caching!

 Programmer has to manually ship around data (overlap with comp.)

 Advantage: fine-grained control over data, deterministic run times

Carnegie Mellon

Cell

 How to program
 SMP or DMP model?

 Parallel model: task parallel / data parallel / stream

 Pushes some complexity to programmer

 Libraries can handle DMA. (do not use for high-performance
computing)

 Available as:
 Already in use in the PlayStation 3

 IBM BladeCenter

 Add-on accelerator cards

Carnegie Mellon

Hybrid/Accelerated

 Designed for:
 Customized applications/supercomputing node

 Main use: numeric/specialized computing

 Microarchitecture
 CPU, FPGA on the same motherboard

 High speed data interconnect

 Peak performance
 CPU’s + FPGA’s

 Features
 Benefits of FPGAs

Carnegie Mellon

Hybrid / Accelerated

 How to program
 Specialized: depends on setup, program

 Need to generate FPGA design (non-trivial)

 Then, generate software

 Spiral generated FPGAs:

Carnegie Mellon

Distributed Grid

Multiproc + GPU + FPGA

Coarse-

grained

parallelism

Fine-grained

parallelism EPIC / SMT

Cluster

SIMD

Multi-core

CPU

Parallel Hierarchy

 Parallelism works on multiple levels (nested?)

 Numeric fast code must explicitly address many/most
levels

 A major difference between levels: cost of shipping data
between nodes

Carnegie Mellon

Parallel Mathematical Constructs

 Blackboard

Carnegie Mellon

Conclusion

 Parallelism is the future

 Extracting/using parallelism: ongoing challenge
 Hardware is ahead of software:

 Producing parallel hardware currently easier than producing
parallelized software

 “Our industry has bet its future on parallelism(!)”
- David Patterson, UC Berkeley

 Challenge: how to “map” a given problem to a parallel
architecture/platform

Carnegie Mellon

Meetings Apr 7 (next Monday)

Markus

11 – 11:45 8

11:45 – 12:30 7

1:30 – 2:15 9

2:15 - 3 16

3 – 3:45 14

12

4:30 – 5:15 6

5:15 – 6 13

Fred

4:30 – 5:15 1

5:15 – 6 2

6 – 6:45 3

Vas

3:45 – 4:30 4

4:30 – 5:15 10

5:15 - 6 15

Franz

1 – 1:45 17

2 – 2:45 11

4:30 – 5:15 5

