
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
20th Lecture, Mar. 31st

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Introduction

 Parallelism: definition
 Carrying instructions out simultaneously

 (Think multi-core)

 Why parallelism?
 Duh (if you can make it faster, why not?)

 More importantly: not many other options now

 Why not parallelism?
 Difficult to build hardware

 Difficult to program

 Not intuitive to humans

 No clear hardware or software model

 Application specific

Carnegie Mellon

Lecture overview

 Introduction / Background

 Parallel platforms / hardware paradigms

 Parallel software paradigms

 Mapping algorithms to parallel platforms

 SIMD homework feedback

 Administrative stuff
 Feedback form

 Schedule project meetings

Carnegie Mellon

Parallelism: motivation

 Idea has been around for a
while. Why now?

 Frequency scaling no longer
an option

 We’re forced to parallelism

 Think Intel/AMD multi-
cores

Future (now) will be driven by parallelism

Carnegie Mellon

Parallel Programming

Archs:

SMP

Cluster

Multi-core

SIMD

FPGA

Paradigms:

Data parallel

Task parallel

Streaming

EPIC

Problem

+

parallel

algorithms

Carnegie Mellon

Parallel Architectures

 Parallelism: one size doesn’t fit all
 SMP (symmetric multiprocessing): smaller CPUs

 Multi-core

 Multi-CPU, Hybrids, FPGAs etc.

 Distributed/NUMA: larger systems

 Cluster (including grid computing)

 Supercomputers

 Other types:

 SIMD: fine-grained parallelism

 Stream computing: pipelined parallelism

 Instruction level parallelism
(VLIW/EPIC/superscalar)

Carnegie Mellon

Parallel Architectures - Constraints

 SMP:
 Easy to program

 System complexity is pushed to hardware
design

 Coherency protocols

 Scalability

Shared Memory

Core1

$

Core2

$

Core3

$

Core4

$

 Distributed computing:
 Can never match SMP’s node-to-node data transfer

capability

 Hardware architecture scales very well

 Commodity hardware

 Grid computing (“virtual supercomputers” built out
of untrusted, unreliable nodes)

 Programmer burden is higher

Node1 Node2

Node4Node3

Network

Carnegie Mellon

Solving a Problem in Parallel

 So far, we’ve looked at parallel architectures
 To solve problems in parallel, we must identify and extract

parallelism out of problems

 Question 1: does it make sense to parallelize?
 Amdahl’s law: predict theoretical maximum speedup

 Question 2: what is the target platform/arch?
 Does the problem “fit” the architecture well?

Carnegie Mellon

Parallel Paradigms

 Task parallelism
 Distribute execution processes across computing nodes

 Data parallelism
 Distribute chunks of data across computing nodes

 Many real-world problems lie on the continuum

 Other models: streaming
 Sequential tasks performed on the same data

 Pipelined parallelism

 Eg: DVD decoding

Carnegie Mellon

Mapping problems to machines

Challenge: To map the problem
to the architecture using
abstractions

 Some problems match some
architectures better

Archs:

SMP

Cluster

Multi-core

SIMD

FPGA

Paradigms:

Data parallel

Task parallel

Streaming

EPIC

Problem

+

parallel

algorithms

You!

Given

Use these

“Fit” to:

Carnegie Mellon

Case studies

“Heavy metal”

 Clusters

 BlueGene/P (Supercomputer)

Desktop

 Future Intel (Nehalem)

 GPU (Graphics Processing Unit)

 Hybrid/accelerated (CPU+GPU+FPGA)

 Cell Broadband Engine

Carnegie Mellon

Cluster Computing

 Designed for:

 Supercomputing applications

 High availability (redundant nodes)

 Load balancing

 Architecture

 Multiple nodes connected by fast local area networks

 Can use COTS nodes

 Peak performance

 100 Teraflop/s (Cluster Platform 3000. 14,000 Intel Xeons!)

 How to program

 Specific to each cluster

 Notes

 Power/heat concerns

 Most supercomputers, grids

Carnegie Mellon

BlueGene/P: Cluster Supercomputer

 IBM’s supercomputer in the making

 Architecture
 PowerPC based

 High-speed 3D toroidal network

 Dual processors per node

 Peak performance
 Designed for upto 1 Petaflop/s

 32,000 cpus for 111 Teraflop/s

 Features
 Scalable in increments of 1024 nodes

Carnegie Mellon

Future Intel: Nehalem

 Designed for:
 Desktop/mainstream computing

 Servers

 Successor to Intel’s “Core” architecture

 (2008-09)

 Microarchitecture
 Your standard parallel CPU of the future

 1-8 cores native (single die)

 Out-of-order

 8MB on-chip L3 cache

 Hyperthreading

Carnegie Mellon

Intel Nehalem

 Peak performance
 ~ 100 Gflop/s (excluding GPU)

 Features
 45nm

 SSE4

 Intergrated Northbridge (combat memory wall)

 GPU on chip (off-die)

 Programming:
 Not very different from current CPUs

 Notes
 AMD + ATI = something similar

 What next?

Carnegie Mellon

GPU (Graphics Processing Unit)

 Designed for:
 Originally/largely: graphics rendering

 Also: as a massive floating-point compute unit. General Purpose
GPU (GPGPU)

 Microarchitecture
 Multiple “Shader units”: vertex/geometry/pixel

 Typically a PCI/PCIe card

 Can be on-chip

 Peak performance
 0.5 – 1 TeraFlop/s

Carnegie Mellon

GPU

 Programming
 Programmable shader units designed for matrix/vector operations

 Stream processing

 Grid computing (ATI / Folding@Home)

 Notes
 Numeric computation only

 Shipping data from and to destination (main memory)

Carnegie Mellon

Cell Broadband Engine (“Cell”)

 Designed for:
 Heavy desktop numeric computing

 General purpose

 Gaming / heavy multimedia vector processing

 Supercomputer node

 Bridge gap: desktop and GPU

 Microarchitecture
 Hybrid multi-core CPU

 1 PPE (general-purpose core)

 8 SPEs (specialized vector cores)

 Core Interconnect

 Peak performance
 ~ 230 Gflop/s (3.2GHz, using all 9 cores)

 204.8 Gflop/s (3.2GHz, using just the SPEs)

Carnegie Mellon

Cell BE

 PPE (Power Processor Element) x1

 Power architecture based

 Out-of-order , dual-threaded core

 For general purpose computing (OS)

 32+32KB L1, 512KB L2

 AltiVec vector unit

 Synergistic Processing Elements x8

 For numeric computing

 Dual-pipelined

 256kb “Local Stores” – 1 per SPE

 Interconnect: EIB – (SPE Interconnect Bus)

 Explicit DMA instead of caching!

 Programmer has to manually ship around data (overlap with comp.)

 Advantage: fine-grained control over data, deterministic run times

Carnegie Mellon

Cell

 How to program
 SMP or DMP model?

 Parallel model: task parallel / data parallel / stream

 Pushes some complexity to programmer

 Libraries can handle DMA. (do not use for high-performance
computing)

 Available as:
 Already in use in the PlayStation 3

 IBM BladeCenter

 Add-on accelerator cards

Carnegie Mellon

Hybrid/Accelerated

 Designed for:
 Customized applications/supercomputing node

 Main use: numeric/specialized computing

 Microarchitecture
 CPU, FPGA on the same motherboard

 High speed data interconnect

 Peak performance
 CPU’s + FPGA’s

 Features
 Benefits of FPGAs

Carnegie Mellon

Hybrid / Accelerated

 How to program
 Specialized: depends on setup, program

 Need to generate FPGA design (non-trivial)

 Then, generate software

 Spiral generated FPGAs:

Carnegie Mellon

Distributed Grid

Multiproc + GPU + FPGA

Coarse-

grained

parallelism

Fine-grained

parallelism EPIC / SMT

Cluster

SIMD

Multi-core

CPU

Parallel Hierarchy

 Parallelism works on multiple levels (nested?)

 Numeric fast code must explicitly address many/most
levels

 A major difference between levels: cost of shipping data
between nodes

Carnegie Mellon

Parallel Mathematical Constructs

 Blackboard

Carnegie Mellon

Conclusion

 Parallelism is the future

 Extracting/using parallelism: ongoing challenge
 Hardware is ahead of software:

 Producing parallel hardware currently easier than producing
parallelized software

 “Our industry has bet its future on parallelism(!)”
- David Patterson, UC Berkeley

 Challenge: how to “map” a given problem to a parallel
architecture/platform

Carnegie Mellon

Meetings Apr 7 (next Monday)

Markus

11 – 11:45 8

11:45 – 12:30 7

1:30 – 2:15 9

2:15 - 3 16

3 – 3:45 14

12

4:30 – 5:15 6

5:15 – 6 13

Fred

4:30 – 5:15 1

5:15 – 6 2

6 – 6:45 3

Vas

3:45 – 4:30 4

4:30 – 5:15 10

5:15 - 6 15

Franz

1 – 1:45 17

2 – 2:45 11

4:30 – 5:15 5

