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Summer Research Project

 Preferred: undergraduate student

 Fulltime (40 hours/week), 3 months

 Pay: standard CMU (somewhere between 10 and 15/hour)

 Requirement: good standing in this class, overall GPA > 3.5

 Why?
 Research experience, maybe even publication

 Good for grad school
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Today

 How to get a fast DFT: FFTW (version 2.x)
Focus on scalar code

 References
 FFTW website

 M. Frigo: A fast Fourier transform compiler

http://www.fftw.org/
http://portal.acm.org/citation.cfm?id=301661
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Precomputing Constants

 The “twiddle” matrix T produces multiplications by 
constants that are sines and cosines: 

y[i] = sin(i·pi/128)·x[i]

Very expensive! (remember HW 2)

 Solution: 
 Precompute once and store in table

 Reuse many times

 Assumes transform is used many times (what if not?)
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Basic Block Optimizations for FFTs

 Problem: similar to MMM 

 We do not want to recurse all the way to n = 2

 Infrastructure produces overhead = destroys performance.

 Solution:

 Unrolled DFT code for fixed small sizes (≤ 32 say). 
In FFTW called codelets

 Optimization for these blocks is much harder than for the 
micro MMMs in MMM

 Again, compilers often don’t do a good job on unrolled code

 Doing it by hand you get a crisis (62 functions! Why 62?)

 Solution: Code generator/optimizer for small sizes
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FFTW Codelet Generator

 DAG: directed acyclic graph
 Represents a DFT algorithm (the dataflow)

 Nodes: load, store, adds, mults by constant

 Give example on blackboard

DAG
generator

Simplifier Schedulern
DFTn

codeDAG DAG

FFT codelet
generator

n
Codelet for DFTn

Twiddle codelet for DFTn
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DAG Generator

 Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, 
Rader, represented in sum notation

 For given n, suitable FFTs are recursively applied to yield n 
(real) expression trees for y0, …, yn-1

 Trees are fused to an (unoptimized) DAG
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Simplifier
 Applies:

 algebraic transformations

 common subexpression elimination (CSE)

 DFT-specific optimizations

 Algebraic transformations
 Simplify mults by 0, 1, -1

 Distributivity law: kx + ky = k(x + y), kx + lx = (k + l)x
May destroy common subexpressions and thus increase op count!

 Canonicalization: (x-y), (y-x) to (x-y), -(x-y)

 CSE: standard
 E.g., two occurrences of 2x+y: assign new temporary variable

 DFT specific optimizations
 All numeric constants are made positive

 Reason: constants need to be loaded into registers, too

 CSE also on transposed DAG
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Scheduler
 Determines in which sequence the DAG is unparsed to C

(topological sort of the DAG)
Goal: minimizer register spills

 If R registers are available, then a 2-power FFT needs at 
least Ω(nlog(n)/R) register spills [1]
Same holds for a fully associative cache

 FFTW’s scheduler achieves this (asymptotic) bound 
independent of R

 Sketch it on blackboard

[1] Hong and Kung: “I/O Complexity: The red-blue pebbling game” 

http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
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Codelet Examples

 Notwiddle 2

 Notwiddle 3

 Twiddle 3

 Notwiddle 32

 Techniques not seen before:
 Scoping (variables only defined where they occur)

Purpose: simplifies dependency analysis

 Single static assignment (SSA) style: Each variable has only one 
single definition in the code
Purpose: no artificial dependencies

../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/t1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
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Optimizations

 Locality of data access (reuse)

 Precomputing constants

 Fast basic blocks

 Adaptivity

 Start on blackboard
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Dynamic Programming (DP)

 An algorithmic technique to solve optimization problems

 Definition: DP solves an optimization problem by caching 
and reusing subproblem solutions (memoization) rather 
than recomputing them

 Well-suited for all divide-and-conquer algorithms with a 
degree of freedom in the divide step

 Inherent assumption: Best solution is independent of the 
context in which the problem has to be solved
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DP for FFTs

 Goal: Find the best recursion strategy for a DFT of size 2k, 
computed with the Cooley-Tukey FFT

 Assume the best recursions for sizes 21,…,2k-1 are already 
computed

 Split DFT 2k in all k-1 possible ways and use the best 
recursions for the smaller DFTs. 

 The fastest of these k-1 algorithms is the solution for 2k

 Cost: (k-1)+(k-2)+…+1 = O(k2) for size 2k
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DP for FFTs (cont’d)

 In FFTW: Essentially as described on the previous slide, 
except left DFT is of size ≤ 64 (since twiddle codelet)

 Does DP assumption hold for FFTs?
 Not clear. In particular the best FFT could depend on the stride.

 But works well in practice and is fast
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Performance (Scalar Code)

The code for radix-4 FFT is in the tutorial
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MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Cache 
optimization

Blocking
Blocking 

(rarely useful)

recursive FFT, 
fusion of steps

Register 
optimization

Blocking
Blocking 
(sparse format)

Scheduling
small FFTs

Optimized basic 
blocks

Unrolling, instruction ordering, scalar replacement, 
simplifications (for FFT)

Other 
optimizations

— —
Precomputation of 
constants

Adaptivity
Search: blocking 
parameters

Search: register 
blocking size

Search: recursion 
strategy


