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m Overview
= |dea, benefits, reasons, restrictions
= History and state-of-the-art floating-point SIMD extensions
= How to use it: compiler vectorization, class library, intrinsics, inline assembly

m Writing code for Intel’'s SSE
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= |ntrinsics: instructions
= |ntrinsics: common building blocks
m Selected topics
= SSE integer instructions
= QOther SIMD extensions: AltiVec/VMX, Cell SPU

m Conclusion: How to write good vector code
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SIMD (Signal Instruction Multiple Data)
vector instructions in a nutshell

m What are these instructions?

= Extension of the ISA. Data types and instructions for parallel computation on short
(2-16) vectors of integers and floats

M (M [ < (rE 4-way

m Why are they here?

= Useful: Many applications (e.g.,multi media) feature the required fine grain
parallelism — code potentially faster

= Doable: Chip designers have enough transistors available, easy to implement



Carnegie Mellon

_ _ ) ERGNEERRE
Evolution of Intel Vector Instructions

= MMX (1996, Pentium)
= CPU-based MPEG decoding
= Integers only, 64-bit divided into 2x 32t0 8 x 8
= Phased out with SSE4

m  SSE (1999, Pentium lii)
= CPU-based 3D graphics
= 4-way float operations, single precision
= 8 new 128 bit Register, 100+ instructions

= SSE2 (2001, Pentium 4)

= High-performance computing
= Adds 2-way float ops, double-precision; same registers as 4-way single-precision
= Integer SSE instructions make MMX obsolete

m SSE3 (2004, Pentium 4E Prescott)

= Scientific computing
= New 2-way and 4-way vector instructions for complex arithmetic

m SSSE3 (2006, Core Duo)

= Minor advancement over SSE3

m SSE4 (2007, Core2 Duo Penryn)

= Modern codecs, cryptography
= New integer instructions
= Better support for unaligned data, super shuffle engine

More details at http://en.wikipedia.org/wiki/Streaming SIMD Extensions
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Overview Floating-Point Vector ISAs

Vendor Name v-way Precision Introduced with
Intel SSE 4-way single Pentium III
SSE2 + 2-way double Pentium 4
SSE3 Pentium 4 (Prescott)
SSSE3 Core Duo
SSE4 Core2 Extreme (Penryn)
Intel IPF 2-way single Itanium
AMD 3DNow! 2-way single K6
Enhanced 3DNow! K7
3DNow! Professional + 4-way single Athlon XP
AMD64 + 2-way double Opteron
Motorola AltiVec 4-way single MPC 7400 G4
IBM VMX 4-way single PowerPC 970 G5
SPU + 2-way double Cell BE
IBM Double FPU 2-way double PowerPC 440 FP2

Within a extension family, newer generations add features to older ones
Convergence: 3DNow! Professional = 3DNow! + SSE; VMX = AltiVec; SPU%VMX
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Related Technologies
m Original SIMD machines (CM-2,...)

= Don't really have anything in common with SIMD vector extension

m Vector Computers (NEC SX6, Earth simulator)
= \ector lengths of up to 128
= High bandwidth memory, no memory hierarchy
= Pipelined vector operations
= Support strided memory access
m Very long instruction word (VLIW) architectures (ltanium,...)
= Explicit parallelism
= More flexible
= No data reorganization necessary

m Superscalar processors (x86, ...)
= No explicit parallelism
= Memory hierarchy

SIMD vector extensions borrow multiple concepts
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How to use SIMD Vector Extensions?

m Prerequisite: fine grain parallelism
m Helpful: regular algorithm structure

m Easiest way: use existing libraries
Intel MKL and IPP, Apple vDSP, AMD ACML,
Atlas, FFTW, Spiral

m Do it yourself:
= Use compiler vectorization: write vectorizable code

= Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BGIL,...

= |mplement kernels using assembly (inline or coding of full modules)
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Characterization of Available Methods

m Interface used
= Portable high-level language (possibly with pragmas)
= Proprietary language extension (builtin functions and data types)
= C++ Class interface
= Assembly language

m Who vectorizes
= Programmer or code generator expresses parallelism
= Vectorizing compiler extracts parallelism
m Structures vectorized
= Vectorization of independent loops
= |nstruction-level parallelism extraction
m Generality of approach

= (General purpose (e.g., for complex code or for loops)
= Problem specific (for FFTs or for matrix products)
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= limitations of compiler vectorization
= C99 Complex and #pragma help, but still slower than hand-vectorized code
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Problems

m Correct data alignment paramount

m Reordering data kills runtime

m Algorithms must be adapted to suit machine needs

m Adaptation and optimization is machine/extension dependent

m Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it
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Intel Streaming SIMD Extension (SSE)

m Instruction classes
= Memory access (explicit and implicit)
= Basic arithmetic (+, -, *)
= Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
= Logic (and, or, xor, nand)
= Comparison (+, <, >, ...)
= Data reorder (shuffling)
m Data types
= float: __m128 (SSE)
= double: __m128d (SSE2)
= Integer: __m128i (8 bit — 128 bit)

= Intel C++ Compiler Manual
http://lwww.intel.com/cd/software/products/asmo-na/enq/347618.htm
http://lwww.intel.com/cd/software/products/asmo-na/enq/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx



http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx
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Intel C++ Compiler: Automatic Vectorization
m Example program: pointwise vector multiplication

void func(float *c, float *a, float *b, int n) {
for (int 1=0; i<n; i++)
c[i] = a[1] * b[i];

}

m Compiler invocation
C:\>iclvars > NUL

C:\>C>icl /Qc99 /Qrestrict /03 /QxW /Qvec-report3 /FAs /c
test.c

Intel (R) C++ Compiler for 32-bit applications, Version 9.1
Copyright (C) 1985-2006 Intel Corporation. All rights
reserved.

test.c
test.c(2) : (col. 5) remark: LOOP WAS VECTORIZED.
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Intel C++ Compiler: Auto Vectorizer Manual
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Language Support and Directives

This topic addresses language features that better help to vectorize code. The
__declspec(aligniz) ) declaration enables you to overcome hardware alignment
constraints. The restrict qualifier and the pragmas address the stylistic issues due to lexical
scope, data dependency, and arnbiguity resalution.

Language Support

Feature

_ declszpecialign(n)]

_ declszpecialign(n,0ff))

restrict

_ assume_aligned(a, zn)

#praguaivden

fipragua veotor
{aligned|unaligned|always}

#praguanovector

Multi-version Code

Description

Directs the compiler to align the varisble 1o an
mrhyte boundary, Address of the variable is
acddress mod n=0

Directs the compiler to align the varisble 1o an
rmrhyte boundary with offset off within each =
byte boundary. Address of the variable is
gadress mod n=off,

Permits the disambiguator flexibility in alias
assumptions, which enables mare vectorization.

Instructs the compiler 10 assume that array a is
aligned on an wbyte boundary; used in cases
where the campiler hags failed o obtain
alignrment information.

Instructs the compiler 10 ignore assumed vector
dependencies.

Specifies how to vectorize the loop and
indicates that efficiency heuristics should be
ignored.

Specifies that the loop should never be
vectorized,

| »
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Intel C++ Compiler: Options and Output

m On Windows Intel C++ compiler requires VisualStudio

m On command line iclvars . cmd initializes the environment

m Compiler Options
= (99 syntax: /Qc99 /Qrestrict
= Full optimization: /03
= Vectorization target: SSE2 /QxW
other targets: /QxK (SSE) , /QxP (SSE3), /QxT (SSSE), /QxS (SSE4)
= \ectorization report: /Qvec-report3
= Assembly output (source + assembly): /FAs

m Check vectorization quality: Checking output assembly

$B1S517: ; Preds $B1$17 $B1$516

xmm0, XMMWORD PTR [ecx+edi*4] :3.16
mulps xmm0, XMMWORD PTR [edx+edi*4] ;3.23
movaps XMMWORD PTR [esit+edi*4], xmmO ;3.9

xmml, XMMWORD PTR [ecx+edi*4+16] ;3.16
muIips xmml, XMMWORD PTR [edx+edi*4+16] ;3.23
movaps XMMWORD PTR [esit+edi*4+16], xmml ;3.9
add edi, 8 ;2.5
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Intel C++ Compiler: Language Extension

m Language extension

C99 “‘restrict’ keyword

Aligned C library functions: _mm malloc(), mm free()

_assume aligned()

___declspec(__align())

= Pragmas
#pragma vector aligned | unaligned | always
#pragma ivdep
#pragma novector

m Example using language extension
void func(float *restrict c, float *restrict a,
float *restrict b, int n) {
#pragma vector always
for (int i=0; i<n; i++)
c[i] = a[i] * b[i];
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Intel SSE Intrinsics Interface

m Data types
= ml28 f; // ={float £3, f£2, f1, £0}
= ml28d d; // ={double dl, d0}

m Intrinsics
= Native instructions: mm add ps(), mm mul ps(),..
= Multi-instruction: mm setr ps(), mm setl ps,...

m Macros
= Transpose: MM TRANSPOSE4 PS(),...
= Helper: MM SHUFFLE ()
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[7] Intraduction The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmwintrin. h
@ Details about Intrinzics header file,
[J.ammg and. U.Sage Syntax To see detailed information about an infrinsic, click on that intrinsic name in the following
?] Linkz and Bibliography
@ Code Samples table.
@ Intrinsics for Use Across Al LA The results of each infrinsic operation are placed in a register. This register is illustrated
@ MMX(TM) Technology Intrinsics for each infringic with RO-R2, RO, R1, R2 and R3 each represent one of the 4 32-hit
&l 3 Streaming SIMD Extensions pieces of the result registar,
E Owerview
2] Floating-point Intingics zing Streaming SIMD E stensions Intrinsic Operation Corresponding
2] tuithmetic Operations for the Steaming SIMD Estensions Name SSE
E Logizal Operations for the Streaming SIMD E stensions Instruction
ﬂ Comparizong for the Streaming SIMD E stenszions
] Corverzion Dperatlnns fu:ur the Streaming SIMMD E:-:temlu:uns wrn loadh pi | Load high MCWVHPS reg, et
] Load Oper: 1 mitig SIk0 E
] Set Operations far lhe Streaming SIMD Estensions _rmm loadl pi | load low MOVLF3 reg, mem
% gtme Dp'.a.'amns for the.Streamlng.SIMD EHtenS'Dn.S mr load == | Load the low value and clear the three MOV3S
?] Cacheability Support Uging Streaming SIMD Extensions - -
E Integer Intrinzicz ging Streaming SIMD Extenszions high values
E |ktringics to Read and wiite the Control Register for Streaming SIMD Estenzions wr loadl ps | Load one value into all four words MOVSS + Shuffling
E Mizcellaneous Intrinsics Using Streaming SIMD Extensions
E Jsing Streaming SIMD Extensions on Itanium[R] Architecture mrn load ps | Load four values, address aligned HOVAPS
=] lﬂ] tacro Functions
IE Macro Function for Shuffle Using Streaming SIMD Extensions _mm_loadu p= | Load four values, address unaligned HOVTURS
Macro Functions to Read and Wwiite the Contral Regizters )
Macro Function for Matriz Transposition _tao_loadr ps | Load four values in reverse MOV AP ] t
B [ Streaming SIMD Extensions 2 Shutfling
Owerview
% Floating-point Intrinzics
@ |nteger [ntringics _ w128 ren loadh pi{  mwlZ3 a, _ mé4 const *p)
- ge::izusam;ué;:::itizsgand Intrinsics Sets the upper two SP FP values with 64 bits of data loaded from the address o
IE Owerviem b RO R1/R?2 R3
@ |nteger Wector Intrinzic for Streaming SIMD Extensions 3
. 7] Single-precision Floating-point Yector Intrinsics For Streaming SIMD Estensions 3 al | al | *p0 | *pl
. Du:uutule preu:lsmn Flnatlng |:u:|nt \-"eu:tnr Intrlnsms for Streamlng SIMD E:-:tenmu:uns 3
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Intel SSE: Vector Arithmetic
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Arithmetic Operations for Streaming SIMD Extensions

= lu Intel[R] C++ Intinzics Reference ;l
[7) Intraduction The prototypes for Streaming SIMD Extensions (S5E) infrinsics are in the sxrmintrin.h
[7] Details about Intrinsics header file.

@ Maming and Uzage Syntax

(2] Links and Bibliography The results of each intrinsic operation are placed in a register, This register is illustrated

@ Code Samples fqr each infrinsic with RD—RS. RO, R1, R2 and R3 each represent one of the 4 32-bit
@ Intrinsics for Use Acoss A1 14 pieces of the result register.
@ MMX(TM] Technology Intinsics To see detailed infarmation about an intrinsic, click an that intrinsic name in the follawing
B m Streaming SIMD Extensions tahle.
2] Overview
] Floating- |:u:||nl Intrlnsu::s Usmg Slreammg SIMD Extenzions
] Logical Dperatlnns fior the Streaming SIMD E stenzions Intrinsic Dperatlon CorresPondlng SSE Instruction
] Comparizonz for the Streaming SIMD Extenzions e add == Addition ADDSS
E Corversion Operations for the Strearming SIMD E stensions .
E Load Operations far the Streaming SIMD Extensions i add ps Addition ADDPS
E Set Operationz for the Streaming SIMD Extensions
E Store Operations far the Strearning SIMD Estensions i suby 53 Subtraction SUBSS
% lEacheab|I|t;,J 5.upp0r.t Using Str,aammg SIkD EHFEHSIDHS i Sub e SLbiraction SUBPS
?| Integer Intrinzics Using Streaming SIMD Estensions S sl be
E Intrinzics to Read and ‘Wiite the Control Register for Steaming SIMD Extensions mon rul == Multiplication MULSS
E Mizcellaneous Intinsics Using Streaming SIMD E stensions .
E |Jzing Streaming SIMD Extenzions an lbanium(F] Architecturs i mul ps Multiplication MULPS
B ) Macro Functions
@ tacra Function For Shuffle Uzing Streaming SIMD Estensions i div 53 Diivision DIVSS
% macro Funct!ons to Fiea_d and Wntg _the Control Registers i div me Division DIVPS
acra Function for Matrix Transposition S gLy be
B m Streaming SIMD Extenzions 2 mm_sgrt_ss | Sguared Root SORTSS
[7] Overview
@ Floating-point nkrinzics wrn Scrt_ps | Sguared Root SORTPS
@ Integer Intinsics
@ Miscelanenus Functions and Intrinsics i FCp S5 Reciprocal RCPSS
E m Sée;mlng.SIMD Extensions 3 | | N < Reciprocal RCPPS
VEIViEw AL ==E BS

@ Integer Wector Intringic for Streaming SIMD Extenzions 3

@ Single-precizion Floating-point Vectar Intrinsics for Streaming SIMD Extenzions 3

@ Dnuble premsn:nn Floatlng pnlnt\-"ector Intnnsu:s for Streaning SIMD Extenszions 3 wrn ragri_ps | Reciprocal Squared Root | RSQRTPS
I|

mm_rsgrt_ss | Reciprocal Squared Root | RSORTSS

l |

mo_min_ss | Computes Minimum MINSS hd
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Single-precision Floating-point Vector Intrinsics for
Streaming SIMD Extensions 3

?] Welcome ta the Intel[R] C++ Compiler ;I
E Dizclaimer and Legal Information

5 .
% ELZ?,Z?S::I i This Relsase The single-precision floating-point vector intrinsics listed here are designed for the
j Product web Site and Support Intel@ Pentium@ 4 processor with Streaming SIMD Extensions 3 (SSE3).
(2] System Requirsments The results of each intrinsic operation are placed in the registers RO, R1, R2, and R3.
2] FLEXIm™ Electronic Licensin
% Felated Publications . To see detailed information about an intrinsic, click on that intrinsic name in the following
E Huowat to Use This Docurment table.
@ Buiding Applications The prototypes for these intrinsics are in the prmintrin. h header file,
@ Compiler Options
@ Optimizing &pplications Intrinsic Operation Corresponding SSE3
@ Compiler Reference Name Instruction
= m Intel[R] C++ Intrinzics Reference
Intraduction _mm_sddsub_ps | Subtract and add | ADDSUBRS
Detailz about Intrinsics —
Maming and Uzage Syntax —tan_hadd_ps Add HADDFS
Links and BIb'IDgI’aph}l e haub ps Sybtracts HSUEPS
@ Code Samples
@ Intrinzics for Use Across All 1A, wrn_mwovehdup ps | Duplicates MCVSHDUP
@ tME[TH] Technology Intrinsics .
@ Streaming SIMD Extensions rra_rooweldup ps | Duplicates HCWSLDUF
=] [:Q| Strearning SIMD Extensions 2
Overview
@ Flaating-point Irtrinsics extern  wl28 ww sddsub psi wliZ8& &,  mwmlzZ8 bh):
@ Integer Intinsics Subtracts even vector elements while adding odd vectar elements.,
@ Miscellaneous Functions and Intinsics
B I Streaming SIMD Extensions 3 RO R1 R2 R3
[2] Overview
@ Integer Wector Intringic for Streaming SIMD Extenzions 3 al - hi; |al + bl; a2 - b2; a3 + b3;
@ Double-precizion Floating-point Yector Intringics for Streaming SIMD Estenzions 3
[2] Macm Functions for Reading and Witing the Control Fiegister for Streaming SIMD Ex extern w125 e hadd ps| w125 a,  ml25 b);
[2] Miscellaneous Intrinsics for Steaming SIMD Estenzions 3 )
@ Intrinsics for ltanium(R ] Instructions Adds adjacent vector elements,
@ Dat.a .t’j‘n.lignmenl, temony Allocation Int.linsics, and Inline Assembly RO R1 R2 R3
@ Intrinsics Cross-processor Implementation

gt

l |

al + al; a2 + a3; |b0 + bl: ki + b3: _I
-
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@ Building Applications
@ Compiler Options
@ Optimizing Applications
@ Compiler Reference
= m Intel[R] C++ Intrinzics Reference
Introduction
[7] Details about Intrinzsics
@ Haming and Jzage Syntax
@ Linkz and Bibliographw
@ Code Samples
@ Intinsics for Use Across A1 14
@ MME[TM] Technology Intringics
B ([ Streaming SIMD Extensions
2] Dverview
ﬂ Floating-point Intrinzics Using Streaming SIMD Estenzions
ﬂ Arithmetic Operations for the Streaming SIMD Estenzions
ﬂ Logical Operations for the Streaming 51D Extenzions
ﬂ Comparigong for the Streaming SIMD Estenzions
ﬂ Conversion Dperations for the Streaming SIMD Extensions
ﬂ Load Operations for the Streaming SIMD Estenzions
ﬂ Set Operations for the Streaming SIMD Extenzions
ﬂ Store Operations for the Streaming SIMD Extenzions
ﬂ Cacheability Support Uszing Streaming 51D Extenzions
ﬂ Integer Intinzics Using Streaming SIMD Estengions
ﬂ Intrinzics to Read and Write the Control Register for Streaming S1MD Extenzions
ﬂ Mizcellaneous Intrinzics Using Streaming SIMD Estenzions
ﬂ Usging Streaming SIMD Estenzions on [kanium(R] Architecture
= ([ Macro Functions
@ tacro Function for Shuffle Using Streaming SIMD E stengions
[7] Macro Functions to Read and 'wiite the Control Registers
[7] Macro Function for Matrix Transposition

- [P

l _ |

sl

Miscellaneous Intrinsics Using Streaming SIMD
Extensions
The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h
header file.

The results of each infrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed explanation of
each intrinsic. R, RO, R1, R2 and R3 represent the registers in which results are placed.

To see detailed information about an intrinsic, click on that intrinsic name in the following
tahle.

Intrinsic Operation Corresponding
Name SSE
Instruction
mn_shuffle ps | Shuffle SHUFPS
mm_unpackhi_ps | Unpack High UNPCEHPS
min_unpacklo ps | Unpack Low UNPCELES
mn_move_sS3 Set low word, pass in three high MOV3ES
values
win mwowvehl ps Move High to Lowy MOVHLEPS
win mwowvelh ps Move Low o High MOVLHPS
wn wovemask pas | Create four-bit mask MOVHMSKPS
_ wlZ& mn shuffle ps( wliZ8 a, mwlZ8 h, unsigned int immd)

Selects four specific SP FP values from & and b, based on the mask iress, The mask
must be an immediate, See Macro Function for Shuffle Using Streaming SIMD Extensions
for a description of the shuffle semantics.

_ wlZ& mn unpackhi ps( w128 a, wl2E h)
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Macro Function for Matrix Transposition

[2] Related Publications ;I
[2] How to Use This Document The Streaming SIMD Extensions (SSE) provide the following macro function to transpose
@ Building Applications a 4 by 4 matrix of single precision floating point values.

@ Compiler Options

@ Optimizing Applications _NMM TRANSPO3E4 P3(rowd, rowl, rowZ, rowd)

@ Compiler Reference The arguments rowl, rowl, rowz, and row3 are _ m123 values whase elements form
= ) IntellR) C++ Intrinsics Reference the corresponding rows of a 4 by 4 matri, The matrix ransposition is returned in
[2] Introduction arguments rowd, rowl, rowz, and rowd where rowd now holds calumn 0 of the
2] Details about Intrinsics ariginal matrix, rowl now halds column 1 of the ariginal matrix, and sa an.
@ Haming and Uzage Syntax
[2] Links and Bibliography The transposition function of this macro is illustrated in the "Matrix Transposition Using
@ Code Samples the MM TRANSPOSEZ P3"figure,
@ Inkinsics for Use Across Alll4 Matrix Transposition Using _MM_TRANSPOSE4_PS Macro
@ MMX(THM) Technology Intinsics ! : - freee : =
B ([ Streaming SIMD Extensions w0l Mo | Yo | Zo| W towd| X | My Xe | M
2] Owerview
2] Floating-point Intrinsics Using Streaming SIMD Extensions ot Rl o B rew [ ) e e
2] 2uithmetic Operations for the Streaming SIMD Extenzions [ B > N > 5 :
ﬂ Logical Operations for the Streaming SIMD Extensions o gl e
2] Comparizons for the Streaming SIMD Extensions P e ; = | W B TR Y

ﬂ Corvverzion Operations for the Streaming SIMD Estenzions
ﬂ Load Operations for the Streaming SIMD Extenzions
ﬂ Set Operationz for the Streaming SIMD Extensions
ﬂ Store Operations for the Streaming SIMD Estenzions
ﬂ Cacheability Support Uzing Streaming SIMD Extensions
ﬂ Integer Intrinzice Uzing Streaming SIMD Estengions
ﬂ Intrinzice to Read and 'wiite the Control Regizter for Streaming SIMD Estenzions
ﬂ Mizcellaneous Intinzice Using Streaming SIMD Extenzions
ﬂ |dzing Streaming SIMD Extenzions on Itanium(R] Architecture
= () Macro Functions
@ Macro Function for Shuffle Using Streaming SIMD Estengions
[2] Macm Functions to Read and Wiite the Control Registers
B3k aco Function for Matriz Tra i
@ Steaming SIMD Extensions 2
@ Steaming SIMD Extensions 2
@ Intringics for ltanium(R] Instructions
@ [rata Alignment, Memom dllocation Intinsicz, and Inline Azzembly
@ Intringics Crogs-proceszor Implementation

[+]
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Example: Complex Multiplication SSE3

(a + ib)(c + id) = (ac — bd) 4+ i(ad + bc)

b

d

a

a
e
b

swap

acC

bc

C
.

cj]cC

b

ac-bd

ad+bc

d

d

mult

\\\\\‘\\\i
bd

ad

ac-b

\ store
d

ad+bc

Memory

Result:

4 load/stores
3 arithm. ops.
1 reorder op

Not available
in SSE2

Memory
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Looking a t the Assembly

SSE3: SSE2:
movapd xmm0, XMMWORD PTR A movsd xmm3, QWORD PTR A
movddup xmm2, QWORD PTR B movapd xmmé4 , xmm3
mulpd xmm2 , xmmO movsd xmm5, QWORD PTR A+8
movddup xmml, QWORD PTR B+8 movapd xmmO , xmm5
shufpd xmmO, xmmO, 1 movsd xmml, QWORD PTR B
mulpd xmml, xmmO mulsd xmm4, xmml
addsubpd xmm2, xmml mulsd xmm5, xmml
movapd XMMWORD PTR C, xmm2 movsd xmm2, QWORD PTR B+8
mulsd xmmO, xmm2
mulsd xmm3, xmm2
subsd xmm4, xmmO
movsd QWORD PTR C, xmm4
addsd xmm5, xmm3
movsd QWORD PTR C, xmmb5

In SSE2 Intel C++ generates
scalar code (better?)



Carnegie Mellon

) B

Organization

m Overview
= |dea, benefits, reasons, restrictions
= History and state-of-the-art floating-point SIMD extensions
= How to use it: compiler vectorization, class library, intrinsics, inline assembly

m Writing code for Intel’'s SSE

= Compiler vectorization
= |ntrinsics: instructions
= |ntrinsics: common building blocks

m Selected topics

= SSE integer instructions
= QOther SIMD extensions: AltiVec/VMX, Cell SPU

m Conclusion: How to write good vector code
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Intel SSE: Integer Modes

Q} Electrical & Computer
ENGINEERING

E" Intel{R} C++ Compiler Documentation - |EI|£|
G A
Hide Locate  Back Fomward  Home Frint  Options
Lontents | Index | Search | Favorites . . . . . . —
| I _I : _l_ Register Insertion/Extraction Intrinsics for Streaming SIMD
é Floating-point Intrinzsics ;I

1

= [ Integer Intrinsics

E Integer Arithmetic Dperations for Streaming SIMD Extenzions 2
E Integer Logical Operations for Streaming SIMD Estenzions 2

E Integer Shift Operations for Streaming SIMD E stensions 2

E Integer Comparison Operations far Streaming SIMD Estensions 2
E Integer Conversion Operations far Streaming SIMD Estensions 2
E Integer Mave Operations for Streaming SIMD Estensions 2

E Integer Load Operations for Streaming SIMD Extensions 2

E Integer Set Operations for Streaming SIMD Estensions 2

E Integer Store Operations for Streaming SIMD Estensions 2

= QZI Mizcellaneous Functions and Intrinzsics

E Cacheability Support 0 perations for Streaming SIMD Extensions 2
E Mizcellaneous Operations for Streaming SIMD Extensions 2

E Intringics for Casting Support

E Pauze Intringic for Streaming SIMD Extensions 2

E Macra Function far Shutfle

@ Streaming SIMD Extenzions 3

= QQ] Supplemental Streaming SIMD Extensions 3

Overview

Addition Intringics for Streaming SIMD Extengions 3
ubtraction |nkringics for Streaming SIMD Extensions 3
M uliplication [ntrivgics for Streaming SIMD Extensions 3
Abgolute Walue Intrinzics for Streaming SIMD Extengions 3
huffle Intringics for Streaming SIMD Extenzions 3
Concatenate Intringics for Streaming SIMD Extensions 3
Megation Intringics for Streaming SIMD Extenzions 3
E @ Streaming SIMD Extenzions 4
Overview
= @ Streaming SIMD Extensions 4 Vectorizing Compiler and Media Accelerators
E Owerview: Streaming SIMD Extensions 4 Wectarizing Compiler and Media Acceleratc
E Packed Blending Intrinzics for Streaming SIMD Extenzions 4
E Floating Point Dot Product |ntrinzics for Streaming SIMD Extensions 4
2] Packed Format Conversion Intrinsics for Stieaming SIMD Estensions 4
E Packed Integer Min/td ax Intrinzics for Streaming SIMD Extensions 4
E Floating Point Rounding Intrinzics for Streaming SIMD Extensions 4
E Dhw/0RD Mulbiply Intringics for Streaming SIMD Extenzions 4
215 In n Int D E
2] Test Intrirsics for Sheaming SIMD Extensions 4
E Packed D' 0RD ta Unsigned WORD Intrinsic far Streaming SIMD Extensions 4
E Packed Compare for E qual Intrinsics far Streaming SIMD Extensions 4
E Cacheability Suppoart Intringic for Streaming SIMD Estensions 4
@ Streaming SIMD Extensions 4 Efficient Accelerated Sting and Text Processing _ILI
3

Extensions 4

These intrinsics enable data insertion and extraction between general purpose registers and

®MM registers.,

Intrinsic

MName

mm insert ps

_mm_ext.ract_ps

_mm extract epis

_mm extract epiiz

_mm eXtract epifd

_mw eXtract epile

_mm_insert_epid

_mm_insert_epi3z

_mm_insert epifgd

Operation

Insert single precision float into packed single
precision array element selected by index

Extract single precision float from packed
single precision array element selected by
indesx

Extract integer byte from packed integer
array element selected by index

Extract integer double word from packed
integer array element selected by index

Extract integer quad word from packed
integer array element selected by index

Extract integer word from packed integer
array element selected by index

Insert integer byte into packed integer array
element selected by index

Insert integer double word into packed
integer array element selected by index

Insert integer quad word into packed integer
array element selected by index

Corresponding

S5E4
Instruction

INIERTPS

EXTRACTPS

PEXTRE

PEXTRD

PEXTROQ

PEXTRU

PINZERE

PINSED

PINSERQ
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SSE Integer Modes (1)

m SSE generations
= |ntroduced with SSE2
= Functionality extended drastically with SSSE3 and SSE4

m Modes
= 1x128 bit, 2x64 bit, 4x32 bit 8x 16 bit, 16x8 bit
= Signed and unsigned
= Saturating and non-saturating

m Operations
= Arithmetic, logic, and shift, mullo/hi
= Compare, test; min, max, and average
= Conversion from/to floating-point, across precisions
= | oad/store/set
= Shuffle, insert, extract, blend
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SSE Integer Modes (2)

m Interoperability
= |nteger operations can be used with floating-point data
= Typecast support

m Problems
= Only subset of operations available in each mode
= Sometimes need to “build” operation yourself
= (Gathers and scatters even more expensive (8- and 16-way)

// right-shift for signed _ int8 1l6-way
__forceinline _ ml28i mm srli epi8(_ ml28i x, int sh) {
__ml28i signs = mm and sil28(x, mm setl epi32(0x80808080))
__ ml28i z = mm srli epilé6(x, 1);
z = mm and sil28(z, mm setl epi32 (0x7f£7£f7£f7f));
return mm or sil28(z, signs);
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Extending Floating-Point Functionality

m Sign change
= No sign-change instruction for vector elements exist
= |nteger exclusive-or helps

// sign-change of second vector element
forceinline _ ml28 mm chsgn2 ps(_ ml28 f) {
return _castsil28 ps(_mm xor sil28(
_mm castps_sil28(f),
_mm castps _sil28( mm set ps(0.0,0.0,-0.0,0.0))));

}

m Align instruction
= alignr only exists for signed 8-bit integer

// alignr 4-way float variant
__forceinline _ ml28 mm alignr ps(_ ml28 fl1, ml28 £f2, int sh) ({
return castsil28 ps(_mm alignr epi8(
_mm castps sil28(fl), mm castps_sil28(f2), sh));
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Organization

m Overview
= |dea, benefits, reasons, restrictions
= History and state-of-the-art floating-point SIMD extensions
= How to use it: compiler vectorization, class library, intrinsics, inline assembly

m Writing code for Intel’'s SSE

= Compiler vectorization
= |ntrinsics: instructions
= |ntrinsics: common building blocks

m Selected topics

= SSE integer instructions
= QOther SIMD extensions: AltiVec/VMX, Cell SPU

m Conclusion: How to write good vector code
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AltiVec, VMX, Cell BE PPU and SPU,...

m AltiVec: 4-way float, 4-, 8-, and 16-way integer

= |ntroduced with Motorola MPC 7400 G4
(direct competitor to Intel SSE and Pentium [lI)

= (ave big boost to Apple multi media applications
= Still available in Freescale PowerPC processors
= Supported by GNU C builtin functions (2.95, 3.X)

m AltiVec became IBM VMX
= PowerPC 970 G5 (G4 successor) and POWERG
= Cell BE PPU (PowerPC)
= VVMX128 version for Xbox 360 (Xenon processor)
m Cell SPU: closely aligned with VMX

= Double-precision instructions (very slow at this point)
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AltiVec vs. SSE

m AltiVec: PowerPC is 3-operand RISC
= Fused multiply-add
= Powerful general shuffle instruction
= More registers (32 — 128)

m Problem: non-vector memory access

= Unaligned load/store
= Subvector load/store

m AltiVec/VMX is not changing as quickly as SSE
= Variants: AltiVec/VMX, VMX128, SPU
= AltiVec important in embedded computing
= SSE is closer to the consumer market, permanently updated
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Organization

m Overview
= |dea, benefits, reasons, restrictions
= History and state-of-the-art floating-point SIMD extensions
= How to use it: compiler vectorization, class library, intrinsics, inline assembly

m Writing code for Intel’'s SSE

= Compiler vectorization
= |ntrinsics: instructions
= |ntrinsics: common building blocks
m Selected topics
= SSE integer instructions
= Qther SIMD extensions: AltiVec/VMX, Cell SPU

m Conclusion: How to write good vector code
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How to Write Good Vector Code?

m Take the “right” algorithm and the “right” data structures
= Fine grain parallelism
= Correct alignment in memory
= Contiguous arrays

m Use a good compiler (e. g., vendor compiler)

m First: Try compiler vectorization

= Right options, pragmas and dynamic memory functions
(Inform compiler about data alignment, loop independence,...)

= Check generated assembly code and runtime

m [f necessary: Write vector code yourself
= Most expensive subroutine first
= Use intrinsics, no (inline) assembly
= |mportant: Understand the ISA
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Remaining time: Discussion



