
Carnegie Mellon

How to Write Fast Code

SIMD Vectorization
18-645, spring 2008

13th and 14th Lecture

Instructor: Markus Püschel

Guest Instructor: Franz Franchetti

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

SIMD (Signal Instruction Multiple Data)

vector instructions in a nutshell

 What are these instructions?

 Extension of the ISA. Data types and instructions for parallel computation on short

(2-16) vectors of integers and floats

 Why are they here?

 Useful: Many applications (e.g.,multi media) feature the required fine grain

parallelism – code potentially faster

 Doable: Chip designers have enough transistors available, easy to implement

+ x 4-way

Carnegie Mellon

Evolution of Intel Vector Instructions
 MMX (1996, Pentium)

 CPU-based MPEG decoding
 Integers only, 64-bit divided into 2 x 32 to 8 x 8
 Phased out with SSE4

 SSE (1999, Pentium III)
 CPU-based 3D graphics
 4-way float operations, single precision
 8 new 128 bit Register, 100+ instructions

 SSE2 (2001, Pentium 4)
 High-performance computing
 Adds 2-way float ops, double-precision; same registers as 4-way single-precision
 Integer SSE instructions make MMX obsolete

 SSE3 (2004, Pentium 4E Prescott)
 Scientific computing
 New 2-way and 4-way vector instructions for complex arithmetic

 SSSE3 (2006, Core Duo)
 Minor advancement over SSE3

 SSE4 (2007, Core2 Duo Penryn)
 Modern codecs, cryptography
 New integer instructions
 Better support for unaligned data, super shuffle engine

More details at http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Carnegie Mellon

Overview Floating-Point Vector ISAs

Within a extension family, newer generations add features to older ones

Convergence: 3DNow! Professional = 3DNow! + SSE; VMX = AltiVec; SPU¾VMX

Carnegie Mellon

Related Technologies
 Original SIMD machines (CM-2,…)

 Don’t really have anything in common with SIMD vector extension

 Vector Computers (NEC SX6, Earth simulator)
 Vector lengths of up to 128

 High bandwidth memory, no memory hierarchy

 Pipelined vector operations

 Support strided memory access

 Very long instruction word (VLIW) architectures (Itanium,…)
 Explicit parallelism

 More flexible

 No data reorganization necessary

 Superscalar processors (x86, …)
 No explicit parallelism

 Memory hierarchy

SIMD vector extensions borrow multiple concepts

Carnegie Mellon

How to use SIMD Vector Extensions?

 Prerequisite: fine grain parallelism

 Helpful: regular algorithm structure

 Easiest way: use existing libraries

Intel MKL and IPP, Apple vDSP, AMD ACML,

Atlas, FFTW, Spiral

 Do it yourself:

 Use compiler vectorization: write vectorizable code

 Use language extensions to explicitly issue the instructions

Vector data types and intrinsic/builtin functions

Intel C++ compiler, GNU C compiler, IBM VisualAge for BG/L,…

 Implement kernels using assembly (inline or coding of full modules)

Carnegie Mellon

Characterization of Available Methods

 Interface used
 Portable high-level language (possibly with pragmas)

 Proprietary language extension (builtin functions and data types)

 C++ Class interface

 Assembly language

 Who vectorizes
 Programmer or code generator expresses parallelism

 Vectorizing compiler extracts parallelism

 Structures vectorized
 Vectorization of independent loops

 Instruction-level parallelism extraction

 Generality of approach
 General purpose (e.g., for complex code or for loops)

 Problem specific (for FFTs or for matrix products)

Carnegie Mellon

 limitations of compiler vectorization
 C99 _Complex and #pragma help, but still slower than hand-vectorized code

0

2

4

6

8

10

12

14

16

4 5 6 7 8 9 10 11 12 13 14 15 16

log2(input size)

Short vector Cooley-Tukey FFT, Intel intrinsics

Intel C99 complex, pragmas, auto-vectorized

Intel C, real, pragmas, auto-vectorized

ANSI C, real, auto-vectorized

ANSI C, real, x87 (scalar)

Spiral-generated FFT on 2.66 GHz Core2 (4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 9.1, SSSE, Windows XP 32-bit

Carnegie Mellon

Problems

 Correct data alignment paramount

 Reordering data kills runtime

 Algorithms must be adapted to suit machine needs

 Adaptation and optimization is machine/extension dependent

 Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

Intel Streaming SIMD Extension (SSE)

 Instruction classes
 Memory access (explicit and implicit)

 Basic arithmetic (+, -, *)

 Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)

 Logic (and, or, xor, nand)

 Comparison (+, <, >, …)

 Data reorder (shuffling)

 Data types
 float: __m128 (SSE)

 double: __m128d (SSE2)

 Integer: __m128i (8 bit – 128 bit)

 Intel C++ Compiler Manual
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx

http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx

Carnegie Mellon

Intel C++ Compiler: Automatic Vectorization

 Example program: pointwise vector multiplication

void func(float *c, float *a, float *b, int n) {

for (int i=0; i<n; i++)

c[i] = a[i] * b[i];

}

 Compiler invocation
C:\>iclvars > NUL

C:\>C>icl /Qc99 /Qrestrict /O3 /QxW /Qvec-report3 /FAs /c

test.c

Intel(R) C++ Compiler for 32-bit applications, Version 9.1

Copyright (C) 1985-2006 Intel Corporation. All rights

reserved.

test.c

test.c(2) : (col. 5) remark: LOOP WAS VECTORIZED.

Carnegie Mellon

Intel C++ Compiler: Auto Vectorizer Manual

Carnegie Mellon

Intel C++ Compiler: Options and Output
 On Windows Intel C++ compiler requires VisualStudio

 On command line iclvars.cmd initializes the environment

 Compiler Options
 C99 syntax: /Qc99 /Qrestrict

 Full optimization: /O3

 Vectorization target: SSE2 /QxW

other targets: /QxK (SSE) , /QxP (SSE3), /QxT (SSSE), /QxS (SSE4)

 Vectorization report: /Qvec-report3
 Assembly output (source + assembly): /FAs

 Check vectorization quality: Checking output assembly

$B1$17: ; Preds $B1$17 $B1$16

movups xmm0, XMMWORD PTR [ecx+edi*4] ;3.16

mulps xmm0, XMMWORD PTR [edx+edi*4] ;3.23

movaps XMMWORD PTR [esi+edi*4], xmm0 ;3.9

movups xmm1, XMMWORD PTR [ecx+edi*4+16] ;3.16

mulps xmm1, XMMWORD PTR [edx+edi*4+16] ;3.23

movaps XMMWORD PTR [esi+edi*4+16], xmm1 ;3.9

add edi, 8 ;2.5

Carnegie Mellon

Intel C++ Compiler: Language Extension
 Language extension

 C99 “restrict” keyword

 Aligned C library functions: _mm_malloc(), _mm_free()
 _assume_aligned()

 __declspec(__align())

 Pragmas

#pragma vector aligned | unaligned | always

#pragma ivdep

#pragma novector

 Example using language extension
void func(float *restrict c, float *restrict a,

float *restrict b, int n) {

#pragma vector always

for (int i=0; i<n; i++)

c[i] = a[i] * b[i];

}

Carnegie Mellon

Intel SSE Intrinsics Interface

 Data types
 __m128 f; // ={float f3, f2, f1, f0}

 __m128d d; // ={double d1, d0}

 Intrinsics

 Native instructions: _mm_add_ps(), _mm_mul_ps(),…

 Multi-instruction: _mm_setr_ps(), _mm_set1_ps, …

 Macros

 Transpose: _MM_TRANSPOSE4_PS(),…

 Helper: _MM_SHUFFLE()

Carnegie Mellon

Intel SSE: Load Instructions

Carnegie Mellon

Intel SSE: Vector Arithmetic

Carnegie Mellon

Intel SSE: SSE3 Horizontal Add and SUB

Carnegie Mellon

Intel SSE: Reorder Instructions

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

Intel SSE: Transpose Macro

Carnegie Mellon

Example: Complex Multiplication SSE3

a b c d

a b

b a

d dc c

bd ad

ac bc

ac-bd ad+bc

ac-bd ad+bc

Memory

Memory

load load load

mult

mult

swap

addsub

store

Result:

4 load/stores

3 arithm. ops.

1 reorder op

Not available

in SSE2

Carnegie Mellon

Looking a t the Assembly

SSE3:

movapd xmm0, XMMWORD PTR A

movddup xmm2, QWORD PTR B

mulpd xmm2, xmm0

movddup xmm1, QWORD PTR B+8

shufpd xmm0, xmm0, 1

mulpd xmm1, xmm0

addsubpd xmm2, xmm1

movapd XMMWORD PTR C, xmm2

SSE2:

movsd xmm3, QWORD PTR A

movapd xmm4, xmm3

movsd xmm5, QWORD PTR A+8

movapd xmm0, xmm5

movsd xmm1, QWORD PTR B

mulsd xmm4, xmm1

mulsd xmm5, xmm1

movsd xmm2, QWORD PTR B+8

mulsd xmm0, xmm2

mulsd xmm3, xmm2

subsd xmm4, xmm0

movsd QWORD PTR C, xmm4

addsd xmm5, xmm3

movsd QWORD PTR C, xmm5

In SSE2 Intel C++ generates

scalar code (better?)

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

Intel SSE: Integer Modes

Carnegie Mellon

SSE Integer Modes (1)

 SSE generations

 Introduced with SSE2

 Functionality extended drastically with SSSE3 and SSE4

 Modes

 1x128 bit, 2x64 bit, 4x32 bit 8x 16 bit, 16x8 bit

 Signed and unsigned

 Saturating and non-saturating

 Operations

 Arithmetic, logic, and shift, mullo/hi

 Compare, test; min, max, and average

 Conversion from/to floating-point, across precisions

 Load/store/set

 Shuffle, insert, extract, blend

Carnegie Mellon

SSE Integer Modes (2)

 Interoperability

 Integer operations can be used with floating-point data

 Typecast support

 Problems

 Only subset of operations available in each mode

 Sometimes need to “build” operation yourself

 Gathers and scatters even more expensive (8- and 16-way)

// right-shift for signed __int8 16-way

__forceinline __m128i _mm_srli_epi8(__m128i x, int sh) {

__m128i signs = _mm_and_si128(x, _mm_set1_epi32(0x80808080));

__m128i z = _mm_srli_epi16(x, 1);

z = _mm_and_si128(z, _mm_set1_epi32(0x7f7f7f7f));

return _mm_or_si128(z, signs);

}

Carnegie Mellon

Extending Floating-Point Functionality

 Sign change

 No sign-change instruction for vector elements exist

 Integer exclusive-or helps

// sign-change of second vector element

__forceinline __m128 _mm_chsgn2_ps(__m128 f) {

return _castsi128_ps(_mm_xor_si128(

_mm_castps_si128(f),

_mm_castps_si128(_mm_set_ps(0.0,0.0,-0.0,0.0))));

}

 Align instruction

 alignr only exists for signed 8-bit integer

// alignr 4-way float variant

__forceinline __m128 _mm_alignr_ps(__m128 f1, __m128 f2, int sh) {

return _castsi128_ps(_mm_alignr_epi8(

_mm_castps_si128(f1), _mm_castps_si128(f2), sh));

}

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

AltiVec, VMX, Cell BE PPU and SPU,…

 AltiVec: 4-way float, 4-, 8-, and 16-way integer

 Introduced with Motorola MPC 7400 G4

(direct competitor to Intel SSE and Pentium III)

 Gave big boost to Apple multi media applications

 Still available in Freescale PowerPC processors

 Supported by GNU C builtin functions (2.95, 3.X)

 AltiVec became IBM VMX

 PowerPC 970 G5 (G4 successor) and POWER6

 Cell BE PPU (PowerPC)

 VMX128 version for Xbox 360 (Xenon processor)

 Cell SPU: closely aligned with VMX

 Double-precision instructions (very slow at this point)

Carnegie Mellon

AltiVec vs. SSE

 AltiVec: PowerPC is 3-operand RISC

 Fused multiply-add

 Powerful general shuffle instruction

 More registers (32 – 128)

 Problem: non-vector memory access

 Unaligned load/store

 Subvector load/store

 AltiVec/VMX is not changing as quickly as SSE

 Variants: AltiVec/VMX, VMX128, SPU

 AltiVec important in embedded computing

 SSE is closer to the consumer market, permanently updated

Carnegie Mellon

Organization

 Overview

 Idea, benefits, reasons, restrictions

 History and state-of-the-art floating-point SIMD extensions

 How to use it: compiler vectorization, class library, intrinsics, inline assembly

 Writing code for Intel’s SSE

 Compiler vectorization

 Intrinsics: instructions

 Intrinsics: common building blocks

 Selected topics

 SSE integer instructions

 Other SIMD extensions: AltiVec/VMX, Cell SPU

 Conclusion: How to write good vector code

Carnegie Mellon

How to Write Good Vector Code?

 Take the “right” algorithm and the “right” data structures

 Fine grain parallelism

 Correct alignment in memory

 Contiguous arrays

 Use a good compiler (e. g., vendor compiler)

 First: Try compiler vectorization

 Right options, pragmas and dynamic memory functions

(Inform compiler about data alignment, loop independence,…)

 Check generated assembly code and runtime

 If necessary: Write vector code yourself

 Most expensive subroutine first

 Use intrinsics, no (inline) assembly

 Important: Understand the ISA

Carnegie Mellon

Remaining time: Discussion

