
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
11th Lecture, Feb. 20th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Technicalities

 HW 2
 Grades: μ = 82, σ = 16, max = 106, min = 39

 Time: μ = 11, σ = 5

 Grades are now in blackboard: please double check

 HW 2 feedback

Carnegie Mellon

About Plots (and Tables)
 Above all they have to be readable

 If you print out black & white, don’t use color (different marker shapes,
line styles)

 Always label axes and put a title

 Large enough font

 Proper number format
(no 10s of zeros, no 10 digits after decimal point, no 2.345E09)

 Always discuss and analyze plots

Not good:

Carnegie Mellon

Research Projects

 Projects and supervisors

 Start thinking about optimization
 If your problem is a numerical kernel: try techniques you learned in

class, first focus is memory hierarchy

 If your problem has several steps: determine bottleneck, then start
optimizing bottleneck

Example:
Profiling JPEG 2000

http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html

Carnegie Mellon

Meetings next Monday

Markus

11 – 11:45 8

11:45 – 12:30 7

1:30 – 2:15 9

2:15 - 3 16

3 – 3:45 14

12

4:30 – 5:15 6

5:15 – 6 13

Fred

4:30 – 5:15 1

5:15 – 6 2

6 – 6:45 3

Vas

3:45 – 4:30 4

4:30 – 5:15 10

5:15 - 6 15

Franz

1 – 1:45 17

2 – 2:45 11

4:30 – 5:15 5

Carnegie Mellon

Today

 Sparse matrix-vector multiplication (MVM)

 Sparsity/Bebop

Carnegie Mellon

Sparse MVM

 y = y + Ax, A sparse but known

 Important routine in:
 finite element methods

 PDE solving

 physical/chemical simulation (e.g., fluid dynamics)

 linear programming

 scheduling

 signal processing (e.g., filters)

 …

 In these applications, y = y + Ax is performed many times
 justifies one-time tuning effort

 Fundamental difference between MVM and MMM
 blackboard

Carnegie Mellon

Storage of Sparse Matrices

 Standard storage (as 2-D array) inefficient (many zeros
are stored)

 Several sparse storage formats are available

 Explain compressed sparse row (CSR) format (blackboard)
 advantage: arrays are accessed consecutively for y = y + Ax

 disadvantage: inserting elements is costly, no reuse of x

Carnegie Mellon

Direct Implementation y = Ax, A in CSR

void smvm_1x1(int m, const double* value, const int* col_idx,

const int* row_start, const double* x, double* y)

{

int i, jj;

/* loop over rows */

for(i = 0; i < m; i++) {

double y_i = y[i];

/* loop over non-zero elements in row i */

for(jj = row_start[i]; jj < row_start[i+1];

jj++, col_idx++, value++) {

y_i += value[0] * x[col_idx[0]];

}

y[i] = y_i;

}

}

scalar replacement

(only y is reused)

indirect array addressing

(problem for compiler opt.)

Carnegie Mellon

Optimizing Sparse MVM

 Sparsity/Bebop

 Paper used: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc.
SPARSITY: An Optimization Framework for Sparse Matrix
Kernels, Int’l Journal of High Performance Comp. App.,
18(1), pp. 135-158, 2004 (can be found on above website)

http://bebop.cs.berkeley.edu/

Carnegie Mellon

Impact of Matrix Sparsity on Performance

 Adressing overhead (dense MVM vs. dense MVM in CSR):
 ~ 2x slower (Mflop/s, example only)

 Irregular structure
 ~ 5x slower (Mflop/s, example only) for “random” sparse matrices

 Fundamental difference between MVM and sparse MVM
(SMVM):
 sparse MVM is input dependent (sparsity pattern of A)

 changing the order of computation (blocking) requires changing the
data structure (CSR)

Carnegie Mellon

Bebop/Sparsity: SMVM Optimizations

 Register blocking

 Cache blocking

Carnegie Mellon

Register Blocking

 Idea: divide SMVM y = y + Ax into micro (dense) MVMs
of matrix size r x c
 store A in r x c block CSR (r x c BCSR)

 Explain on blackboard
 Advantages:

 reuse of x and y (as for dense MVM)

 reduces index overhead

 Disadvantages:

 computational overhead (zeros added)

 storage overhead (for A)

Carnegie Mellon

Example: y = Ax in 2 x 2 BCSR

void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,

const double *b_value, const double *x, double *y)

{

int i, jj;

/* loop over block rows */

for(i = 0; i < bm; i++, y += 2) {

register double d0 = y[0];

register double d1 = y[1];

/* dense micro MVM */

for(jj = b_row_start[i]; jj < b_row_start[i+1];

jj++, b_col_idx++, b_value += 2*2) {

d0 += b_value[0] * x[b_col_idx[0]+0];

d1 += b_value[2] * x[b_col_idx[0]+0];

d0 += b_value[1] * x[b_col_idx[0]+1];

d1 += b_value[3] * x[b_col_idx[0]+1];

}

y[0] = d0;

y[1] = d1;

}

}

scalar replacement

(y is reused)

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for

Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Carnegie Mellon

Which Block Size (r x c) is Optimal?

 Example: ~ 20,000 x 20,000 matrix with perfect 8 x 8 block
structure, 0.33% non-zero entries

 In this case:
no overhead when blocked r x c, with r,c divides 8

source: R. Vuduc, LLNL

Carnegie Mellon

Speed-up through r x c Blocking

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

• machine dependent
• hard to predict

Carnegie Mellon

How to Find the Best Blocking for given A?

 Best blocksize hard to predict (see previous slide)

 Searching over all r x c (within a range, say 1..12) BCSR
expensive
 But: conversion of A in CSR to BCSR roughly as expensive as 10

SMVMs

 Solution: Performance model for given A
 blackboard

Carnegie Mellon

Gain from Blocking (Dense Matrix in BCSR)
Pentium III Itanium 2

ro
w

 b
lo

c
k
 s

iz
e
 r

ro
w

 b
lo

c
k
 s

iz
e
 r

col. block size ccol. block size c

• machine dependence
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Carnegie Mellon

Register Blocking: Experimental results

 Paper applies method to a large set of sparse matrices

 Performance gains between 1x (no gain) for very
unstructured matrices and 4x

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Carnegie Mellon

Cache Blocking

 Idea: divide sparse matrix into blocks of sparse matrices

 Experiments:
 requires very large matrices (x and y do not fit into cache)

 speed-up up to 2.2x, speed-up only for few matrices, with 1 x 1
BCSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Carnegie Mellon

Multiple Vector Optimization

 Blackboard

 Experiments: up to 9x speedup for 9 vectors

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Carnegie Mellon

Principles in Bebop/Sparsity Optimization

 Optimization for memory hierarchy = increasing locality
 Blocking for registers (micro-MMMs) + change of data structure for A

 Less important: blocking for cache

 Optimizations are input dependent (on sparse structure of A)

 Fast basic blocks for small sizes (micro-MMM):
 Loop unrolling (reduce loop overhead)

 Some scalar replacement (enables better compiler optimization)

 Search for the fastest over a relevant set of
algorithm/implementation alternatives (= r, c)
 Use of performance model (versus measuring runtime) to evaluate

expected gain

red = different from ATLAS

