
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
9th Lecture, Feb. 13th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Technicalities

 Homework 4:
 Is no homework

 Get research project started

 Already posted

 Tasks: For your chosen problem
 Straightforward, correct implementation

 Cost measure definition and cost analysis

 Performance plot, percentage of peak

 Scalar replacement
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Today

 Linear algebra algorithms and optimization
 Solving linear systems (Gauss elimination)

 Matrix inversion

 Determinant
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Reminder: LAPACK

 Implements linear algebra algorithms

 Implemented on top of BLAS using BLAS 3 as much as 
possible (by “blocking” the algorithms)

LAPACK

BLAS
BLAS 1: vector-vector ops
BLAS 2: matrix-vector ops
BLAS 3: matrix-matrix ops

Linear system solving
Matrix inversion

Singular value decomposition
... and more
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Example: Linear Systems and Related

 Solving linear systems

 PLU factorization

 Matrix inversion

 Determinant
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Complexity

 Source: Buergisser, Clausen, Shokrollahi “Algebraic 
Complexity Theory,” Springer 1997, pp. 426

 Definition: P(n), n > 0, a sequence of problems (n = 
problem size), complexity measure = number of adds + 
mults, then

w(P) = inf( g | complexity(P(n)) = O(ng) )

 Problems:
 MMM(n): multiplying two n x n matrices

 MInv(n): inverting an n x n matrix

 PLU(n): computing PLU factorization of an n x n matrix

 Det(n): computing the determinant of an n x n matrix
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Complexity Results

 Example (we had that before): 2 ≤ w(MMM(n)) < 2.38

 Theorem:
w(MMM(n)) = w(MInv(n)) = w(PLU(n)) = w(Det(n))

 Cost of usual implementations:
 MMM(n) = 2n3 + O(n2)

 MInv(n) = 8/3 n3 + O(n2)

 PLU(n) = 2/3 n3 + O(n2)

 Det(n) = 2/3 n3 + O(n2)
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How it’s Implemented

 Blackboard


