
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
9th Lecture, Feb. 13th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Technicalities

 Homework 4:
 Is no homework

 Get research project started

 Already posted

 Tasks: For your chosen problem
 Straightforward, correct implementation

 Cost measure definition and cost analysis

 Performance plot, percentage of peak

 Scalar replacement

Carnegie Mellon

Today

 Linear algebra algorithms and optimization
 Solving linear systems (Gauss elimination)

 Matrix inversion

 Determinant

Carnegie Mellon

Reminder: LAPACK

 Implements linear algebra algorithms

 Implemented on top of BLAS using BLAS 3 as much as
possible (by “blocking” the algorithms)

LAPACK

BLAS
BLAS 1: vector-vector ops
BLAS 2: matrix-vector ops
BLAS 3: matrix-matrix ops

Linear system solving
Matrix inversion

Singular value decomposition
... and more

Carnegie Mellon

Example: Linear Systems and Related

 Solving linear systems

 PLU factorization

 Matrix inversion

 Determinant

Carnegie Mellon

Complexity

 Source: Buergisser, Clausen, Shokrollahi “Algebraic
Complexity Theory,” Springer 1997, pp. 426

 Definition: P(n), n > 0, a sequence of problems (n =
problem size), complexity measure = number of adds +
mults, then

w(P) = inf(g | complexity(P(n)) = O(ng))

 Problems:
 MMM(n): multiplying two n x n matrices

 MInv(n): inverting an n x n matrix

 PLU(n): computing PLU factorization of an n x n matrix

 Det(n): computing the determinant of an n x n matrix

Carnegie Mellon

Complexity Results

 Example (we had that before): 2 ≤ w(MMM(n)) < 2.38

 Theorem:
w(MMM(n)) = w(MInv(n)) = w(PLU(n)) = w(Det(n))

 Cost of usual implementations:
 MMM(n) = 2n3 + O(n2)

 MInv(n) = 8/3 n3 + O(n2)

 PLU(n) = 2/3 n3 + O(n2)

 Det(n) = 2/3 n3 + O(n2)

Carnegie Mellon

How it’s Implemented

 Blackboard

