How to Write Fast Code

18-645, spring 2008 $9^{\text {th }}$ Lecture, Feb. $13^{\text {th }}$

Instructor: Markus Püschel
TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Technicalities

■ Homework 4:

- Is no homework
- Get research project started
- Already posted
- Tasks: For your chosen problem
- Straightforward, correct implementation
- Cost measure definition and cost analysis
- Performance plot, percentage of peak
- Scalar replacement

Today

■ Linear algebra algorithms and optimization

- Solving linear systems (Gauss elimination)
- Matrix inversion
- Determinant

Reminder: LAPACK

- Implements linear algebra algorithms
- Implemented on top of BLAS using BLAS 3 as much as possible (by "blocking" the algorithms)

Linear system solving

Matrix inversion
Singular value decomposition
... and more

Example: Linear Systems and Related

■ Solving linear systems

- PLU factorization
- Matrix inversion
- Determinant

Complexity

■ Source: Buergisser, Clausen, Shokrollahi "Algebraic Complexity Theory," Springer 1997, pp. 426

- Definition: $P(n), n>0$, a sequence of problems ($n=$ problem size), complexity measure = number of adds + mults, then

$$
w(P)=\inf \left(g \mid \text { complexity }(P(n))=O\left(n^{g}\right)\right)
$$

■ Problems:

- $\mathrm{MMM}(\mathrm{n})$: multiplying two $\mathrm{n} \times \mathrm{n}$ matrices
- MInv(n): inverting an $n \times n$ matrix
- PLU(n): computing PLU factorization of an $n \times n$ matrix
- Det(n): computing the determinant of an $\mathrm{n} \times \mathrm{n}$ matrix

Complexity Results

■ Example (we had that before): $2 \leq w(M M M(n))<2.38$

■ Theorem:
$w(M M M(n))=w(M \operatorname{lnv}(n))=w(P L U(n))=w(\operatorname{Det}(n))$

- Cost of usual implementations:
- $\operatorname{MMM}(n)=2 n^{3}+O\left(n^{2}\right)$
- $\operatorname{MInv}(n)=8 / 3 n^{3}+O\left(n^{2}\right)$
- $\operatorname{PLU}(\mathrm{n})=2 / 3 \mathrm{n}^{3}+O\left(\mathrm{n}^{2}\right)$
- $\operatorname{Det}(n)=2 / 3 n^{3}+O\left(n^{2}\right)$

How it's Implemented

■ Blackboard

