
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

1st Lecture, Jan. 14th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Today

 Motivation and idea behind this course

 Technicalities

 Motivation: Concrete applications



Carnegie Mellon

Motivation and idea behind this course



Carnegie Mellon

Scope

 Numerical computing: algorithms and implementation that 
are dominated by additions and multiplications, usually 
floating point

 Three domains of numerical computing:

 Usually there is an unlimited need for performance
large datasets, realtime

Domain Platform Examples

Scientific computing Large computer clusters Climate modeling,

Physics simulations

Consumer computing Standard desktop Adobe Photoshop,

Audio/Video coding

Embedded computing Small low-power processor Signal processing,

Control



Carnegie Mellon

The Problem

 Standard desktop computer, vendor compiler, using optimization flags

 All implementations have roughly the same operations count (~ 4nlog2(n))

 Maybe the DFT is just difficult?

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

12x

30x

Numerical recipes

Best code



Carnegie Mellon

The Problem

 Standard desktop computer, vendor compiler, using optimization flags

 All implementations have exactly the same operations count (2n3)

 What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)



Carnegie Mellon

Evolution of Processors (Intel)



Carnegie Mellon

Evolution of Processors (Intel)



Carnegie Mellon

Evolution of Processors (Intel)

High performance software development becomes a nightmare

Era of

parallelism



Carnegie Mellon

Evolution of Processors: The Future

multicore 

2007

2010 and later

A clean slate

for concurrent

architectures

Cell BE
8+1 cores

IBM Chameleon 
Cell + FPGA

before 2000

Core2 Duo

Core2 Extreme

Virtex 5
FPGA+ 4 CPUs

SGI RASC 
Itanium + FPGA

nVIDIA GPUs

128 processors

Sun Niagara
32 threads

IBM Cyclops64
80 cores

ATI/AMD merger
CPU+GPU fusion

Xtreme DATA 
Opteron + FPGA

ClearSpeed
96 cores

programmability

CPU platforms



Carnegie Mellon

DFT Plot: Analysis

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz

Gflop/s

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x



Carnegie Mellon

MMM Plot: Analysis

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x



Carnegie Mellon

Summary and Facts I

 Implementations with same operations count can have vastly 

different performance (up to 100x and more)

 A cache miss can be 100x more expensive than an addition or multiplication

 Vector instructions can perform 2 or 3 operations in parallel

 All recent desktop computers have multiple cores = processors on one die

 Minimizing operations count does not mean maximizing 

performance

 End of free speed-up: Legacy code will not get automatically 

faster anymore

 CPU frequency scaling has hit the power wall

 Future performance gains through increasing parallelism

 It is not clear how future platforms will look



Carnegie Mellon

Summary and Facts II

 It is very difficult to write the fastest code
 Tuning for memory hierarchy

 Efficient use of vector instructions

 Efficient parallelization (multiple threads)

 Requires expert knowledge in algorithms, coding, and architecture

 Compilers can rarely perform the necessary optimization on 
numerical code
 Often intricate changes in the algorithm required

 Automatic parallelization/vectorization still unsolved

 Highest performance is in general non-portable
 Best code on one computer may be suboptimal on another

 Best code is tuned to microarchitecture

 Often assembly code is hand-written for optimal tuning



Carnegie Mellon

Current Practice

 Legions of programmers implement and optimize the same 

functionality for every platform and whenever a new platform 

comes out



Carnegie Mellon

Current Research: Automatic Performance Tuning

 Automate (parts of) the implementation or optimization

 Research efforts
 Linear algebra: Phipac/ATLAS, LAPACK, 

Sparsity/Bebop/OSKI, Flame

 Tensor computations

 PDE/finite elements: Fenics

 Adaptive sorting

 Fourier transform: FFTW 

 Linear transforms: Spiral

 …others

 New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005



Carnegie Mellon

This Course

 Learn how to write fast code for numerical problems

 Requires multi-disciplinary knowledge

 Principles studied using important examples

 Applied in homeworks and a semester-long research project

Algorithms

Fast implementations of

numerical problems

Software

Compilers

Computer architecture



Carnegie Mellon

This Course cont’d

 Background
 Algorithm analysis

 Compilers

 Computer architecture

 Performance optimization
 Benchmarking, optimization techniques (memory hierarchy, vector 

instructions, multithreading)

 Case studies: important numerical kernels (transforms, linear algebra, 
filters, convolution, …)

 Automatic performance tuning (state-of-the-art research)

 Other knowledge
 History, tips for publishing and presenting, …



Carnegie Mellon

About this Course

 Requirements

 solid C programming skills

 matrix algebra

 senior or above

 Grading

 40% research project

 15% midterm

 35% homework

 10% class participation

 No textbook

 Office Hours: yet to be determined

 Website: www.ece.cmu.edu/~pueschel → teaching → 18-645

http://www.ece.cmu.edu/~pueschel


Carnegie Mellon

Research Project

 Team up in pairs

 Topic: Very fast implementation of a numerical problem

 Jan 28th: suggest to me a problem or I give you a problem

Tip: pick something from your research (for PhD students)

 Show “milestones” during semester

 Write 4 page standard conference paper (template will be 

provided)

 Give short presentation end of semester



Carnegie Mellon

Midterm

 Mostly about algorithm analysis

 Some multiple-choice

 There is no final exam

Final Exam



Carnegie Mellon

Homework

 Exercises on algorithm analysis (Math)

 Implementation exercises 

 Concrete numerical problems

 Study the effect of program optimizations, use of compilers, use of special 

instructions, etc. (Writing C code + creating runtime/performance plots)

 Some templates will be provided

 Homework scheduled to leave time for research project



Carnegie Mellon

Classes/Class Participation

 I’ll start on time, duration ~1:30 (without break)

 be on time, it’s good style

 It is important to attend

 many things I’ll teach are not in books

 I’ll use part slides part blackboard

 Ask questions

 I will provide some anonymous feedback mechanism 

(maybe every 3-4 weeks)



Carnegie Mellon

Questions?



Carnegie Mellon

Motivation: Concrete Applications



Carnegie Mellon

Scientific Computing (Large Clusters)

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:

• Fluid dynamics

• Chemistry

• Biology

• Medicine

• Geophysics

Methods:

• Mostly linear algebra

• PDE solving

• Linear system solving

• Finite element methods



Carnegie Mellon

Consumer Computing (Desktop, …)

Photo/video processing Audio coding Security

Image compression

Methods:

• Linear algebra

• Transforms

• Filters

• Many others

Original JPEG JPEG2000



Carnegie Mellon

Embedded Computing (Low-power processors)

Sensor networks Cars Robotics

Computation needed:

• Signal processing

• Control

• Communication

www.dei.unipd.it www.microway.com.auwww.ece.drexel.edu

Methods:

• Linear algebra

• Transforms, Filters

• Coding



Carnegie Mellon

Research (Examples at ECE/CMU)

Biometrics Medical Imaging

Bioimaging
Computer vision

Bhagavatula/Savvides Moura

Kovacevic

Kanade



Carnegie Mellon

Summary

 A very large number of diverse applications in engineering, 

science, consumer market rely on numerical computation

 The computations are diverse but rely on basic mathematical 

functionality (see 13 dwarfs, Berkeley report on parallel computing landscape)

 Linear algebra (dense/sparse)

 Transforms/filters

 Grid methods

 Encryption

 Graph traversals, sorting

 …

 Unlimited need for performance

 In this course you learn how to make numerical applications 

run fast on modern computing platforms (focus desktop)


