
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

1st Lecture, Jan. 14th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Today

 Motivation and idea behind this course

 Technicalities

 Motivation: Concrete applications



Carnegie Mellon

Motivation and idea behind this course



Carnegie Mellon

Scope

 Numerical computing: algorithms and implementation that 
are dominated by additions and multiplications, usually 
floating point

 Three domains of numerical computing:

 Usually there is an unlimited need for performance
large datasets, realtime

Domain Platform Examples

Scientific computing Large computer clusters Climate modeling,

Physics simulations

Consumer computing Standard desktop Adobe Photoshop,

Audio/Video coding

Embedded computing Small low-power processor Signal processing,

Control



Carnegie Mellon

The Problem

 Standard desktop computer, vendor compiler, using optimization flags

 All implementations have roughly the same operations count (~ 4nlog2(n))

 Maybe the DFT is just difficult?

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

12x

30x

Numerical recipes

Best code



Carnegie Mellon

The Problem

 Standard desktop computer, vendor compiler, using optimization flags

 All implementations have exactly the same operations count (2n3)

 What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)



Carnegie Mellon

Evolution of Processors (Intel)



Carnegie Mellon

Evolution of Processors (Intel)



Carnegie Mellon

Evolution of Processors (Intel)

High performance software development becomes a nightmare

Era of

parallelism



Carnegie Mellon

Evolution of Processors: The Future

multicore 

2007

2010 and later

A clean slate

for concurrent

architectures

Cell BE
8+1 cores

IBM Chameleon 
Cell + FPGA

before 2000

Core2 Duo

Core2 Extreme

Virtex 5
FPGA+ 4 CPUs

SGI RASC 
Itanium + FPGA

nVIDIA GPUs

128 processors

Sun Niagara
32 threads

IBM Cyclops64
80 cores

ATI/AMD merger
CPU+GPU fusion

Xtreme DATA 
Opteron + FPGA

ClearSpeed
96 cores

programmability

CPU platforms



Carnegie Mellon

DFT Plot: Analysis

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz

Gflop/s

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x



Carnegie Mellon

MMM Plot: Analysis

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x



Carnegie Mellon

Summary and Facts I

 Implementations with same operations count can have vastly 

different performance (up to 100x and more)

 A cache miss can be 100x more expensive than an addition or multiplication

 Vector instructions can perform 2 or 3 operations in parallel

 All recent desktop computers have multiple cores = processors on one die

 Minimizing operations count does not mean maximizing 

performance

 End of free speed-up: Legacy code will not get automatically 

faster anymore

 CPU frequency scaling has hit the power wall

 Future performance gains through increasing parallelism

 It is not clear how future platforms will look



Carnegie Mellon

Summary and Facts II

 It is very difficult to write the fastest code
 Tuning for memory hierarchy

 Efficient use of vector instructions

 Efficient parallelization (multiple threads)

 Requires expert knowledge in algorithms, coding, and architecture

 Compilers can rarely perform the necessary optimization on 
numerical code
 Often intricate changes in the algorithm required

 Automatic parallelization/vectorization still unsolved

 Highest performance is in general non-portable
 Best code on one computer may be suboptimal on another

 Best code is tuned to microarchitecture

 Often assembly code is hand-written for optimal tuning



Carnegie Mellon

Current Practice

 Legions of programmers implement and optimize the same 

functionality for every platform and whenever a new platform 

comes out



Carnegie Mellon

Current Research: Automatic Performance Tuning

 Automate (parts of) the implementation or optimization

 Research efforts
 Linear algebra: Phipac/ATLAS, LAPACK, 

Sparsity/Bebop/OSKI, Flame

 Tensor computations

 PDE/finite elements: Fenics

 Adaptive sorting

 Fourier transform: FFTW 

 Linear transforms: Spiral

 …others

 New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005



Carnegie Mellon

This Course

 Learn how to write fast code for numerical problems

 Requires multi-disciplinary knowledge

 Principles studied using important examples

 Applied in homeworks and a semester-long research project

Algorithms

Fast implementations of

numerical problems

Software

Compilers

Computer architecture



Carnegie Mellon

This Course cont’d

 Background
 Algorithm analysis

 Compilers

 Computer architecture

 Performance optimization
 Benchmarking, optimization techniques (memory hierarchy, vector 

instructions, multithreading)

 Case studies: important numerical kernels (transforms, linear algebra, 
filters, convolution, …)

 Automatic performance tuning (state-of-the-art research)

 Other knowledge
 History, tips for publishing and presenting, …



Carnegie Mellon

About this Course

 Requirements

 solid C programming skills

 matrix algebra

 senior or above

 Grading

 40% research project

 15% midterm

 35% homework

 10% class participation

 No textbook

 Office Hours: yet to be determined

 Website: www.ece.cmu.edu/~pueschel → teaching → 18-645

http://www.ece.cmu.edu/~pueschel


Carnegie Mellon

Research Project

 Team up in pairs

 Topic: Very fast implementation of a numerical problem

 Jan 28th: suggest to me a problem or I give you a problem

Tip: pick something from your research (for PhD students)

 Show “milestones” during semester

 Write 4 page standard conference paper (template will be 

provided)

 Give short presentation end of semester



Carnegie Mellon

Midterm

 Mostly about algorithm analysis

 Some multiple-choice

 There is no final exam

Final Exam



Carnegie Mellon

Homework

 Exercises on algorithm analysis (Math)

 Implementation exercises 

 Concrete numerical problems

 Study the effect of program optimizations, use of compilers, use of special 

instructions, etc. (Writing C code + creating runtime/performance plots)

 Some templates will be provided

 Homework scheduled to leave time for research project



Carnegie Mellon

Classes/Class Participation

 I’ll start on time, duration ~1:30 (without break)

 be on time, it’s good style

 It is important to attend

 many things I’ll teach are not in books

 I’ll use part slides part blackboard

 Ask questions

 I will provide some anonymous feedback mechanism 

(maybe every 3-4 weeks)



Carnegie Mellon

Questions?



Carnegie Mellon

Motivation: Concrete Applications



Carnegie Mellon

Scientific Computing (Large Clusters)

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:

• Fluid dynamics

• Chemistry

• Biology

• Medicine

• Geophysics

Methods:

• Mostly linear algebra

• PDE solving

• Linear system solving

• Finite element methods



Carnegie Mellon

Consumer Computing (Desktop, …)

Photo/video processing Audio coding Security

Image compression

Methods:

• Linear algebra

• Transforms

• Filters

• Many others

Original JPEG JPEG2000



Carnegie Mellon

Embedded Computing (Low-power processors)

Sensor networks Cars Robotics

Computation needed:

• Signal processing

• Control

• Communication

www.dei.unipd.it www.microway.com.auwww.ece.drexel.edu

Methods:

• Linear algebra

• Transforms, Filters

• Coding



Carnegie Mellon

Research (Examples at ECE/CMU)

Biometrics Medical Imaging

Bioimaging
Computer vision

Bhagavatula/Savvides Moura

Kovacevic

Kanade



Carnegie Mellon

Summary

 A very large number of diverse applications in engineering, 

science, consumer market rely on numerical computation

 The computations are diverse but rely on basic mathematical 

functionality (see 13 dwarfs, Berkeley report on parallel computing landscape)

 Linear algebra (dense/sparse)

 Transforms/filters

 Grid methods

 Encryption

 Graph traversals, sorting

 …

 Unlimited need for performance

 In this course you learn how to make numerical applications 

run fast on modern computing platforms (focus desktop)


