Computational Photography and Video: Video Synthesis

Prof. Marc Pollefeys

Last Week: HDR

Schedule	Computational Photography and Video	
24 Feb	Introduction to Computational Photography	
3 Mar	More on Camera,Sensors and Color	Assignment 1
10 Mar	Warping, Mosaics and Morphing	Assignment 2
17 Mar	Blending and compositing	Assignment 3
24 Mar	High-dynamic range	Assignment 4
31 Mar	Video Synthesis	Project proposals
7 Apr	Easter holiday - no classes	
14 Apr	TBD	Papers
21 Apr	TBD	Papers
28 Apr	TBD	Papers
5 May	Project update	Project update
12 May	TBD	Papers
19 May	Papers	Papers
26 May	Papers	Papers
2 June	Final project presentation	Final project presentation

ЕН

Breaking out of 2D
 - ...now we are ready to break out of 2D

But must we go to full 3D? 4D?

Today's schedule

- Tour Into the Picture ${ }^{1}$
- Video Textures²
${ }^{1}$ Slides borrowed from Alexei Efros, who built on Steve Seitz's and David Brogan's ${ }^{2}$ Slides from Arno Schoedl

EH

on to 3D...

We want more of the plenoptic function

We want real 3D scene walk-throughs:

Camera rotation
Camera translation

Can we do it from a single photograph?

Camera rotations with

Original image

St.Petersburg
photo by A. Tikhonov
Virtual camera rotations

Camera translation

- Does it work?
synthetic PP

Yes, with planar scene (or far away)

- PP3 is a projection plane of both centers of projection, so we are OK!

EH

So, what can we do here?

- Model the scene as a set of planes!
- Now, just need to find the orientations of these planes.

ETH

Some preliminaries: projective geometry

Ames Room
alt.link

ETH

Silly Euclid: Trix are for kids!

Parallel lines???

Vanishing points (2D)

ЕН

Vanishing points

- Properties
- Any two parallel lines have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes define different vanishing lines

ЕН

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes define different vanishing lines

EH

Fun with vanishing points

ETH

"Tour into the Picture" (SIGGRAPH '97) Horry, Anjyo, Arai

-Create a 3D "theatre stage" of five billboards

-Specify foreground objects through bounding polygons
-Use camera transformations to navigate through the scene

The idea

- Many scenes (especially paintings), can be represented as an axisaligned box volume (i.e. a stage)
- Key assumptions:
- All walls of volume are orthogonal
- Camera view plane is parallel to back of volume
- Camera up is normal to volume bottom
- How many vanishing points does the box have?
- Three, but two at infinity
- Single-point perspective
- Can use the vanishing point
- to fit the box to the particular
- Scene!

Fitting the box volume

- User controls the inner box and the vanishing point placement (\# of DOF???)
- Q: What's the significance of the vanishing point location?
- A: It's at eye level: ray from COP to VP is perpendicular to image plane.

Example of user input: vanishing point and back face of view volume are defined

High
Camera

Example of user input: vanishing point and back face of view volume are defined

High
Camera

Example of user input: vanishing point and back face of view volume are defined

Low
Camera

Example of user input: vanishing point and back face of view volume are defined

Low
Camera

Comparison of how image is subdivided based on two different camera positions. You should see how moving the vanishing point corresponds to moving the eyepoint in the 3D world.

High Camera

Low Camera

Another example of user input: vanishing point and back face of view volume are defined

Another example of user input: vanishing point and back face of view volume are defined

Left
Camera

Another example of user input: vanishing point and back face of view volume are defined

Right
Camera

Another example of user input: vanishing point and back face of view volume are defined

Right
Camera

Comparison of two camera placements - left and right. Corresponding subdivisions match view you would see if you looked down a hallway.

Left Camera

Right Camera

2D to 3D conversion

- First, we can get ratios

2D to 3D conversion

- Size of user-defined back plane must equal size of camera plane (orthogonal sides)
- Use top versus side ratio to determine relative height and width dimensions of box
- Left/right and top/bot ratios determine part of 3D camera placement

DEMO

- Now, we know the 3D geometry of the box
- We can texture-map the box walls with texture from the image

ETH IT ideno

link to web page with example code

Foreground Objects

-Use separate billboard for each

- For this to work, three separate images used:
- Original image.
- Mask to isolate desired foreground images.
- Background with objects removed

Foreground Objects

- Add vertical rectangles for each foreground object
- Can compute 3D coordinates P0, P1 since they are on known plane.
- P2, P3 can be computed as before (similar triangles)

(a) Specifying of a foreground object

(c) Three foreground object models

Foreground

See also...

- Tour into the picture with water surface reflection
- Tour into the Video:
- by Kang + Shin

EH

Today's schedule

- Tour Into the Picture ${ }^{1}$
- Video Textures²
${ }^{1}$ Slides borrowed from Alexei Efros, who built on Steve Seitz's and David Brogan's ${ }^{2}$ Slides from Arno Schoedl

EH

Markov Chains

- probability of going from state i to state j in n time steps:

$$
p_{i j}^{(n)}=\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)
$$

and the single-step transition as:

$$
p_{i j}=\operatorname{Pr}\left(X_{1}=j \mid X_{0}=i\right)
$$

The n-step transition satisfies the Chapman-Kolmogorov equation, that for any $0<k<n$:

$$
p_{i j}^{(n)}=\sum_{r \in S} p_{i r}^{(k)} p_{r j}^{(n-k)}
$$

EH

Markov Chains

- Regular Markov chain: class of Markov chains where the starting state of the chain has little or no impact on the $p(X)$ after many steps.

EH

Markov Chain

$$
\left(\begin{array}{lll}
0.3 & 0.6 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4
\end{array}\right)
$$

What if we know today and yestarday's weather?

Text Synthesis

- [Shannon,'48] proposed a way to generate Englishlooking text using N -grams:
- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

- Results (using alt.singles corpus):
- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl Richard Szeliski
 David Salesin Irfan Essa

Microsoft Research, Georgia Tech

Still photos

Video clips

I

Video textures

ETH

Problem statement

video clip

video texture

ETH

Our approach

ETH

How do we find good transitions?

Finding good transitions

- Compute L_{2} distance $D_{i, j}$ between all frames

VS.

Similar frames make good transitions ETH

Markov chain representation

Similar frames make good transitions ETH

Transition costs

- Transition from i to j if successor of i is similar to j
- Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition probabilities

Probability for transition $\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{j}}$ inversely related to cost:

$$
P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

high $\sigma \quad$ low σ

Preserving dynamics

ETH

Preserving dynamics

ETH

Preserving dynamics

- Cost for transition $i \rightarrow j$

$$
\text { - } C_{i \rightarrow j}=w_{k} D_{i+k+1, j+k}
$$

$i+2$
j+1

EH

Preserving dynamics - effect

- Cost for transition $i \rightarrow j$

$$
\text { - } C_{i \rightarrow j}=w_{k} D_{i+k+1, j+k}
$$

EH

Dead ends

- No good transition at the end of sequence

ETH

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

EH

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

EH

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

EH

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

EH

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

- Q-learning

Future cost - effect

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Visual discontinuities

- Problem: Visible "Jumps"

Crossfading

- Solution: Crossfade from one sequence to the other.

B_{j-2}

B

A_{i-1} / B_{i-2}
A_{i-1} / B_{i-2}
B_{j+1}

EH

Morphing

- Interpolation task:

Morphing

- Interpolation task:

- Compute correspondence between pixels of all frames

Morphing

- Interpolation task:

- Compute correspondence between pixels of all frames
- Interpolate pixel position and
 color in morphed frame
- based on [Shum 2000]

Results - crossfading/morphing

Results - crossfading/morphing

video

Crossfading

Frequent jump \& crossfading

Video portrait

- Useful for vien pages

ETH

Video portrait - 3D

- Combine with IBR techniques ETH

Region-based analysis

- Divide video up into regions

- Generate a video texture for each region ETH

Automatic region analysis

User-controlled video textures

slow
variable
User selects target frame range ETH

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion

ETH

Video sprite extraction

Video sprite control

- Augmented transition cost:

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]

Interactive fish

Summary

- Video clips \rightarrow video textures
- define Markov process
- preserve dynamics
- avoid dead-ends
- disguise visual discontinuities

ETH

Discussion

- Some things are relatively easy

Discussion

- Some are hard

ETH

A final example

Michel Gondry train video

http://youtube.com/watch?v=qUEs1BwVXGA

