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Abstract. An octree is a recursive partition of the unit cube, such that in each
step a cube is subdivided into eight smaller cubes. Those cubes that are not further
subdivided are the leaves of the octree. We consider the problem of coloring the
leaves of an octree using as few colors as possible such that no two of them
get the same color if they share a face. It turns out that the number of colors
needed depends on a parameter that we call unbalancedness. Roughly speaking,
this parameter measures how much adjacent cubes differ in size. For most values
of this parameter we give tight bounds on the minimum number of colors, and
extend the results to higher dimensions.

1 Introduction

Octrees are a fundamental data structure to store any three-dimensional data in such a
way that search and insert operations can be performed efficiently. Therefore, octrees
are frequently used, for instance in computational geometry and computer graphics (see
e.g. [5]).

An octree is a binary partition of the unit cube. More precisely, an octree is obtained
by starting from a single cube, and recursively subdividing cubes into eight smaller
cubes of equal size. The structure of an octree can be seen as a tree, where each node
represents a cube in the subdivision process. If a cube is further subdivided, the cor-
responding node in the tree has eight children. The cubes associated to children nodes
are also referred to as sub-cubes of the cube that corresponds to the parent node. An
example of an octree is shown in Figure 1(a).

We say that two cubes in an octree are face-adjacent iff they share a two-dimensio-
nal face (that is, a face of one of the cubes contains a face of the other cube). Similarly,
two cubes are called edge-adjacent iff they share a one-dimensional face, and vertex-
adjacent iff they share a zero-dimensional face. Whenever the term “adjacent” appears
without further qualification in the following, we refer to face-adjacency.

The purpose of this paper is to analyze the problem of coloring the leaves of octrees
(i.e., those cubes that are not further subdivided) using as few colors as possible, such
that no two adjacent cubes receive the same color. Figure 1(b) shows a proper coloring
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(a) Structure. (b) A proper 3-coloring.

Fig. 1. An octree.

of an octree using three colors. In all figures appearing in this paper we indicate the
color of a cube by coloring its bottom face.

In an octree, adjacent cubes may differ in size. To capture this property, we introduce
a parameter that measures the unbalance. An octree is said to be k-unbalanced, if the
edge lengths of neighboring cubes differ by at most a factor of 2k. A 0-unbalanced
octree is called balanced. If there is no condition on the balance of adjacent cubes, we
call an octree ∞-unbalanced, or just unbalanced. As it turns out, the number of colors
needed for coloring an octree depends on this parameter.

1.1 Related Work

The problem of coloring octrees has been formulated by Benantar et al. [1]. It is a
natural generalization of the corresponding problem for quadtrees, which are the two-
dimensional counterparts of octrees obtained by recursively subdividing a square into
four congruent smaller squares.

For quadtrees the coloring problem appears in the context of solving linear elliptic
partial differential equations on shared-memory parallel computers [2]. The basic idea is
the following. If the squares of a quadtree are colored with respect to vertex-adjacency,
then the squares that belong to one particular color class are spatially well separated
and can therefore be processed in parallel without conflict. They present a linear-time
algorithm for coloring 1-unbalanced quadtrees with at most six colors. For unbalanced
quadtrees an algorithm using at most eight colors is given by Benantar et al. [1].

Recently, Eppstein, Bern and Hutchings [3] proved several results on coloring quad-
trees with respect to edge-adjacency. They prove that balanced quadtrees can be colored
with three colors, and that unbalanced quadtrees can be colored using at most four col-
ors. Both bounds are tight in the sense that some quadtrees require this many colors.
They also improved the bound for coloring the squares of unbalanced quadtrees with
respect to vertex-adjacency from eight to six colors, and constructed a quadtree that
requires at least five colors.
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1.2 Our Results

In this paper we mainly concentrate on octree coloring problems with respect to face
adjacency, and quadtree coloring problems with respect to edge adjacency.

However, recursive subdivisions of cubes are obviously not restricted to dimensions
two and three. Since most of our results naturally extend to cubes of arbitrary dimen-
sion, we present them in a more general setting. The following definition provides the
generalization of octrees to arbitrary dimensional structures, which we call 2d-trees.

Definition 1. For d ∈
�

, a 2d-tree is a data structure formed by starting from a single
d-dimensional cube and recursively subdividing d-dimensional cubes into 2d smaller
d-dimensional cubes of equal size.

Let k be a non-negative integer. A 2d-tree is called k-unbalanced iff any two cubes
that share a face (that is, a face of one of the cubes contains a face of the other cube)
are within a factor of 2k in edge length.

By coloring a 2d-tree we mean coloring its leaves, that is, those cubes that are not
further subdivided. The coloring of a 2d-tree is called proper iff any two cubes that
share a face are colored with different colors. We say that a 2d-tree is k-colorable iff
there exists a proper coloring for its leaves using at most k colors.

The first observation that can be made is that a balanced 2d-tree is 2-colorable, for
every d ∈

�
. Indeed, since all cubes in a balanced 2d-tree have the same size, it can be

represented as a finite set of cells of the axis parallel integer grid subdivision in � d. The
cells of this subdivision can be colored with two colors, by coloring all cells that have
even sum of their coordinates with color one, and all the others with color two. We will
refer to this coloring as the coloring in checkered fashion.

Our results are presented in Table 1. For each d and k, the corresponding entry c in
the table gives the minimal number of colors needed to color a k-unbalanced 2d-tree.
This means that, on one hand, we provide an algorithm for coloring k-unbalanced 2d-
trees with c colors and, on the other hand, we give an example of a k-unbalanced 2d-tree
which cannot be colored with c − 1 colors.

The paper of Eppstein, Bern and Hutchings [3] already settles this question for
d = 2, k = 1, and d = 2, k = ∞. These two results are marked bold in the table.

d\k 0 1 2 3 4 5 6 ∞

2 2 3 4 4 4 4 4 4

3 2 4 5 5 5 5 5

4 2 4 6 6 6 6

5 2 4 ≤6 7 7 7

6 2 4 ≤6 8 8

7 2 4 ≤6 ≤8 9

Table 1. Minimal number of colors needed to color a k-unbalanced 2
d-tree.
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Obviously, the values in the rows of the table are nondecreasing. The same holds for
columns, since by using the structure of a k-unbalanced 2d-tree which is not c-colorable
one can easily construct a k-unbalanced 2d+1-tree which is not c-colorable. These prop-
erties set upper and lower bounds in the cases in which we could not determine the exact
number of colors needed (empty cells).

2 Lower bounds

Bern, Eppstein and Hutchings [3] gave a neat algorithm to color any 1-unbalanced
quadtree using at most three colors. Moreover, the color of each square in the quadtree
can be set without knowledge of the subdivision.

For 1-unbalanced octrees, it turns out that three colors are not enough. For the proof
of this claim we need the following two lemmata.

Lemma 2. Let A, B and C be congruent cubes such that both B and C share a face
with A, and B and C share an edge. Moreover, let the cube A be further subdivided
into eight cubes (see Fig. 2(a)).

If these cubes are properly colored with three colors, then B and C have to get the
same color, and the six sub-cubes of A that are adjacent to B or C have to be colored
in checkered fashion with the remaining two colors.

Proof. Suppose that the arrangement of cubes in Figure 2 is properly 3-colored. We
denote the two sub-cubes of A that are adjacent to both B and C by A1 and A2. Since

AB

C

(a) Configuration. (b) Forced Coloring.

Fig. 2. Illustration for Lemma 2.

B, A1 and A2 are pairwise adjacent they all have to be colored with different colors. We
can assume without loss of generality that B is colored with color 1, A1 with color 2,
and A2 with color 3. Since C is adjacent to both A1 and A2, it has to be colored with
color 1. Hence, each of the remaining four sub-cubes of A that are adjacent to B or
C has to be colored either with color 2, if it is adjacent to A2, or with color 3, if it is
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adjacent to A1. That gives exactly the coloring of the six sub-cubes of A by colors 2
and 3 in checkered fashion, as shown in Figure 2(b). ut

Lemma 3. Let A, B, C and D be congruent cubes, such that all of B, C, and D share
a face with A, and that B and C do not share an edge. Moreover, let cube A be further
subdivided into eight cubes (see Fig. 3).

If these cubes are properly colored with three colors, then B, C, and D get the same
color, and the eight sub-cubes of A are colored in checkered fashion with the remaining
two colors.

Proof. Apply Lemma 2 twice, once to the cubes A, B, and D, and then to the cubes A,
C, and D. ut

AB C

D

(a) Configuration. (b) Forced Coloring.

Fig. 3. Illustration for Lemma 3.

Note that a collection of cubes can be colored in checkered fashion with two fixed
colors in two different ways. Using the configurations from the last two lemmata as
building blocks, we give a lower bound on the number of colors needed to properly
color 1-unbalanced octrees.

Theorem 4. There exists a 1-unbalanced octree that is not 3-colorable.

Proof. We show that the 1-unbalanced arrangement of cubes presented in Fig. 4 cannot
be colored with three colors. Some cubes of the octree are omitted, since they will not
be needed for the analysis. However, they can be easily added without violating the
1-unbalancedness. Note that the cubes that appear in the example are of three different
sizes—we will refer to them as big, medium and small cubes. Denote the two big cubes
that are subdivided by A and B, and denote the two medium sub-cubes of A that are
subdivided into small cubes by A1 and A2, as shown in Fig. 4(a).

Now, suppose there is a proper 3-coloring. First, we look at the two adjacent big
cubes at the back of the arrangement (behind A and B). They have to be colored with
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B

A

A A 1 2

(a) The construction

(b) Two configurations to apply Lemma 2.

Fig. 4. A 1-unbalanced octree that is not 3-colorable.
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different colors. We can assume without loss of generality that the top cube is colored
with color 1 and the one below is colored with color 2.

Then, apart from A there are three big cubes adjacent to the subdivided cube B.
This arrangement enables us to use Lemma 3. Since we know that the cube behind B

has color 1, the other two big cubes should also be colored with color 1. Further, the
sub-cubes of B have to be colored in checkered fashion with colors 2 and 3.

Finally, the sub-cubes of A (except A1 and A2) together with the two big cubes
behind and below A form the configuration from Lemma 2. Since the big cube behind
A is colored with color 2, the other one should have color 2 as well. The six medium
sub-cubes of A have to be colored in checkered fashion with colors 1 and 3.

It remains to prove that this coloring is not proper. Consider the subdivided cube A1

and its three neighboring medium cubes that are shaded in Fig. 4(b). By Lemma 3 the
medium cubes above and below A1 both have the same color. Similarly, the medium
cubes above and below A2 both have the same color. But, we already know that the two
cubes above A1 and A2 are colored in checkered fashion using colors 2 and 3, whereas
the two cubes below A1 and A2 are colored in checkered fashion using colors 1 and 3.
Contradiction. ut

Theorem 5. There exists a d-unbalanced 2d-tree that cannot be (d + 1)-colored.

Proof. We are going to provide examples of a 2-unbalanced quadtree that requires four
colors and a 3-unbalanced octree that requires five colors. The latter example can be
generalized to prove the statement in higher dimensions.

First, we consider the 2-unbalanced quadtree as shown in Fig. 5. Note that some
squares of the depicted quadtree are omitted, as they will not be needed for the analysis.
They can be easily added without violating the 2-unbalancedness.

(a) Initial 3-clique.

?

(b) Remaining colors are forced.

Fig. 5. A 2-unbalanced quadtree that is not 3-colorable.
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Assume that this quadtree can be 3-colored. The three squares marked in Fig. 5(a)
are pairwise adjacent, and, hence, have to be colored differently. If we proceed to color
those squares for which the color is uniquely determined, we end up with the coloring
depicted in Fig. 5(b). Obviously, this cannot be extended to the last square. Contradic-
tion.

Next, we exhibit a 3-unbalanced octree T that cannot be colored with four colors.
The construction is shown in Fig. 6(a).

Assume that this octree can be 4-colored. The four cubes marked in Fig. 6(a) are
pairwise adjacent, and, hence, have to be colored differently. If we proceed to color
those cubes for which the color is uniquely determined, we end up with the coloring
depicted in Fig. 6(b). Obviously, this cannot be extended to the last cube. Contradiction.

In the following, we use the octree T to construct corresponding examples in higher
dimensions. First, we show how to construct a 4-unbalanced 24-tree T ′. Start with a
4-dimensional cube C. A copy of T is then placed onto an arbitrary facet of C. We
extend (“grow”) each of the 3-dimensional cubes in the copy of T to the 4-dimensional
cube, such that it does not overlap with the cube C.

The obtained configuration of 4-dimensional cubes can be easily completed (by
adding more cubes) to a 24-tree T ′. Since the octree T has only four levels of subdivi-
sion, T ′ is a 4-unbalanced 24-tree.

The cubes in T ′ obtained from cubes in T are adjacent to one another the same way
as in T , and in addition they are all adjacent to the cube C. Since T cannot be colored
with four colors, T ′ cannot be colored with five colors.

This construction can be repeated in the same fashion, each time increasing the
dimension by 1. This way, for every d ≥ 3 we obtain a d-unbalanced 2d-tree that
cannot be (d + 1)-colored. ut

3 Algorithms for coloring 2
d-trees

We proved that at least four colors are needed to color a 1-unbalanced octree. Some-
what surprisingly, four colors are enough even for a 1-unbalanced 2d-tree of arbitrary
dimension.

Theorem 6. Every k-unbalanced 2d-tree is (2k + 2)-colorable, for k ≥ 0, d ≥ 2.

Proof. We color the cubes of the k-unbalanced 2d-tree according to their size—all the
cubes with edge length 2−` are colored in checkered fashion using the colors (2` mod
2k + 2) and (2` + 1 mod 2k + 2), for every non-negative integer `.

It remains to be shown that this coloring is proper. Two cubes of different size that
are colored with the same color have edge ratio at least 2k+1, and therefore they cannot
be adjacent in a k-unbalanced 2d-tree. If two adjacent cubes have the same size then
they are colored with different colors by definition of the coloring in checkered fashion.
Hence, the coloring is proper. ut

The upper bound we just obtained is tight in some cases, but not in general. The
theorem below provides a better upper bound, if d < 2k.

Theorem 7. Every 2d-tree is (d + 2)-colorable, for d ≥ 2.
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(a) Initial 4-clique.

?

(b) Remaining colors are forced.

Fig. 6. A 3-unbalanced octree that is not 4-colorable.
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Proof. We follow the idea presented in [3]. First, we assign an arbitrary color to the unit
cube. Then, we subdivide it recursively assigning colors to the newly obtained cubes—
in step t we color all cubes of edge size 2−t. Note that this way cubes are colored even
if they are subdivided. Eventually, we obtain a coloring of all leaves of the 2d-tree.

For each subdivision of a cube of color c into 2d sub-cubes, we color them as fol-
lows. A pairwise non-adjacent half of them (one color class of the checkered 2-coloring)
is colored with color c. After that each of the cubes in the other half has d neighbors
of color c and at most d additional neighbors of arbitrary color (since at that moment
no cube of smaller size has been colored). Altogether, there are at most d + 1 different
colors in its neighborhood. Hence, one of the d + 2 colors can be used to color it. ut

Note that the existence of a coloring for the case d = 2 (quadtrees) follows from
the four-color theorem for planar graphs [4].

4 Open Problems

It remains to determine the exact number of colors needed to color 2-unbalanced octrees
(Is it four or five?). We conjecture that four colors are enough.

Another interesting direction is to investigate the octree coloring problems with
respect to edge/vertex-adjacency, where to the best of our knowledge no results have
been obtained so far.
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