The Secular Equation

My First Encounter with
Prof. Gene H. Golub (1932-2007)

Walter Gander, ETH and HKBU

International Workshop on Matrix Computations
Gene Golub Memorial Day 2018
Hangzhou
April 20-24, 2018

Least Squares with Rank Deficient Matrix

- Consider the least squares problem $\|A \mathbf{x}-\mathbf{b}\|^{2}=\min$ with $A \in \mathbb{R}^{m \times n}, m>n, \operatorname{rank}(A)=r<n$.
- Many solutions, want minimal norm solution $\mathbf{x}_{\text {min }}$
- Today $\mathbf{x}_{\text {min }}$ is computed most conveniently by the SVD
- decompose $A=U \Sigma V^{\top}$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$
- determine rank $r, \sigma_{r} \neq 0, \quad \sigma_{k}=0, k=r+1, \ldots, n$
- form $U_{r}:=U(:, 1: r), V_{r}:=V(:, 1: r), \Sigma_{r}:=\Sigma(1: r, 1: r)$
- $\Longrightarrow \mathbf{x}_{\text {min }}=V_{r} \Sigma_{r}^{-1} U_{r}^{\top} \mathbf{b}$

Solution without using SVD ?

- Use extrapolation! Don't need to know the rank.

I presented this idea 1974 in a talk in the Numerical Analysis Colloquium at ETH.

- Choose $\varepsilon>0$ and consider

$$
\binom{A}{\varepsilon I} \mathbf{x}(\varepsilon) \approx\binom{\mathbf{b}}{0}
$$

- Matrix has now full rank, can show

$$
\mathbf{x}(\varepsilon)=\left(A^{\top} A+\varepsilon^{2} I\right)^{-1} A^{\top} \mathbf{b}=\mathbf{x}_{\text {min }}+\mathbf{c}_{1} \varepsilon^{2}+\mathbf{c}_{2} \varepsilon^{4}+\cdots
$$

Using $\varepsilon_{k+1}=\varepsilon_{k} / 2$ and Romberg-extrapolation we get $\lim _{\varepsilon \rightarrow 0} \mathbf{x}(\varepsilon)=\mathbf{x}_{\text {min }}$.

- Can speed up computing of $\mathbf{x}\left(\varepsilon_{k}\right)$ by first computing $A=Q R$ or by bidiagonalization.
Example: $A \in \mathbb{R}^{40 \times 8}, \operatorname{rank}(A)=3$
$\mathrm{m}=40$; $\mathrm{A}=\mathrm{magic}(\mathrm{m})$; $\mathrm{n}=\mathrm{m} / 5$; $\mathrm{A}=\mathrm{A}(:, 1: \mathrm{n})$; $\mathrm{b}=\mathrm{A}$ *rand($\mathrm{n}, 1)$;
Solutions:

Matlab $A \backslash \mathbf{b}$	Using SVD	Extrapolation
Warning: Rank deficient	with rank $r=3$	4 iterations
1.846673326583244	0.457727535991772	0.457727535991773
2.459131966980111	0.747175086297768	0.747175086297764
0	0.694218248476673	0.694218248476673
0	0.616598049455061	0.616598049455064
0	0.669554887276158	0.669554887276158
0	0.535347735013380	0.535347735013383
0	0.482390897192287	0.482390897192288
0.725632546879197	0.828425400739452	0.828425400739448

Norm of solutions: $3.159758693196030 \quad 1.8121279768941891 .812127976894188$
Norm of residuals:
$1.0 \mathrm{e}-10$ *
$0.055694948577711 \quad 0.136651389778460 \quad 0.064150008164078$

My Way to Stanford

- In the audience of my 1974-talk were

Peter Henrici 1923-1987

Rudolf Kalman
1930-2016

- Kalman gave me one of his papers containing a proof (using only the Penrose Equations) that the pseudo-inverse is unique.
- Henrici encouraged me to apply for a NSF grant to continue the research with the "master of least squares algorithms": Gene Golub.

The Golden Year 1977-1978

- Research proposal accepted by the Swiss NSF, got a grant.
- We spent a year at Stanford University. I worked as postdoc in Serra House in the numerical analysis group of Prof. Gene H. Golub.

NUMERICAL ANALYSIS	GROUP
FACULTY \& VISITORS	Room
c. DAhlouist	$\stackrel{2}{2}$
w. gander	${ }_{12}$
c. LEoN	1
J. oucer	18
R. sweet	7
STUDENTS	
M bercer	3
P. moestad	3
D. BoLer	4 3
t. Chan	6
B. coughran	5
E. Grosse	6
M. Hestu	6
R. Levenue	${ }_{4}^{3}$
S. NASH	4
M. overton	
L. trefethen	5
SECRETARY	
J. wricht	
TECH, TYPIST	
d. Rudsick	

Gene gave me one of his papers:

J. Soc. Indust. Appl. Math.

Vol. 13, No. 4, December, 1965
Printed in U.S.A.

ON THE STATIONARY VALUES OF A SECOND-DEGREE POLYNOMIAL ON THE UNIT SPHERE*

GEORGE E. FORSYTHE and GENE H. GOLUB \dagger

1. The problem. Let A be a Hermitian square matrix of complex elements and order n. Let b be a known n-vector of complex numbers. For each complex n-vector x, the nonhomogeneous quadratic expression

$$
\begin{equation*}
\Phi(x)=(x-b)^{H} A(x-b) \tag{1.1}
\end{equation*}
$$

(H denotes complex conjugate transpose) is a real number. C. R. Rao of the Indian Statistical Institute, Calcutta, suggested to us the problem of maximizing (or minimizing) $\Phi(x)$ for complex x on the unit sphere $S=\left\{x: x^{H} x=1\right\}$. Since Φ is a continuous function on the compact set S, such maxima and minima always exist. We here extend the problem to include finding all stationary values of Φ.

In summary, our problem is:
(1.2) \quad find all x which make $\Phi(x)$ stationary for $x^{H} x=1$.

Quotes from Paper

- \quad No consideration to a practical computer algorithm is given here.
- As an abstraction from optimal control theory, Balakrishnan [1] studies the minimization of $\|C \mathbf{y}-\mathbf{f}\|^{2}$, subject to the quadratic inequality constraint $\mathbf{y}^{\top} \mathbf{y} \leq 1 \ldots$
- THEOREM. If \mathbf{x} is any vector in S at which $\Phi(\mathbf{x})$ is stationary with respect to S, then there exists a real number $\lambda=\lambda(\mathbf{x})$ such that

$$
\begin{align*}
A(\mathbf{x}-\mathbf{b}) & =\lambda \mathbf{x} \tag{1.5}\\
\mathbf{x}^{H} \mathbf{x} & =1 \tag{1.6}
\end{align*}
$$

Conversely, if any real λ and vector \mathbf{x} satisfy (1.5)-(1.6), then \mathbf{x} renders $\Phi(\mathbf{x})$ stationary with respect to S.

- Then the requirement that $\mathbf{x}^{H} \mathbf{x}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}=1$ is equivalent to the condition

$$
\begin{equation*}
g(\lambda)=\sum_{i=1}^{n} \frac{\lambda_{i}\left|b_{i}\right|^{2}}{\left|\lambda_{i}-\lambda\right|^{2}}=1 \tag{2.3}
\end{equation*}
$$

(2.3) is now called a secular equation!

Secular Equation - One of the Favorite Topics of Gene

- Conference on Computational Methods with Applications, August 19-25, 2007, Harrachov, Czech Republic ${ }^{\text {a }}$
- Gene's talk is available on-line:

Matrix Computations
 and
 the Secular Equation

Gene H. Golub

Stanford University

[^0]
One of the Many Examples in Gene's Talk

Constrained Eigenvalue Problem

$$
\begin{gathered}
A=A^{T} \\
\max _{\mathbf{x} \neq \mathbf{0}} \begin{array}{l}
\mathbf{x}^{T} A \mathbf{x} \\
\text { s.t. } \quad \\
\mathbf{x}^{T} \mathbf{x}=1 \\
\mathbf{c}^{T} \mathbf{x}=0
\end{array} \\
\phi(\mathbf{x} ; \lambda, \mu)=\mathbf{x}^{T} A \mathbf{x}-\lambda\left(\mathbf{x}^{T} \mathbf{x}-1\right)+2 \mu \mathbf{x}^{T} \mathbf{c} \\
\operatorname{grad} \phi=0 \Longrightarrow A \mathbf{x}-\lambda \mathbf{x}+\mu \mathbf{c}=\mathbf{0} \\
\\
\mathbf{x}=-\mu(A-\lambda I)^{-1} \mathbf{c} \\
\mathbf{c}^{T} \mathbf{x}=0 \Longrightarrow \mathbf{c}^{T}(A-\lambda I)^{-1} \mathbf{c}=0
\end{gathered}
$$

Constrained Eigenvalue Secular Equation

$$
\begin{gathered}
A=Q \Lambda Q^{T}, \mathbf{d}=Q^{T} \mathbf{c} \\
\sum_{i=1}^{n} \frac{d_{i}^{2}}{\left(\lambda_{i}-\lambda\right)}=0
\end{gathered}
$$

Least Squares with Quadratic Constraint

- 1977 Gene Golub suggested to me to work on this problem ${ }^{\text {a }}$

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\min \text { s.t. }\|C \mathbf{x}-\mathbf{d}\|^{2}=\delta^{2}
$$

- Lagrange function: $L(\mathbf{x}, \lambda)=\|A \mathbf{x}-\mathbf{b}\|^{2}+\lambda\left(\|C \mathbf{x}-\mathbf{d}\|^{2}-\delta^{2}\right)$
- The solution is a stationary points of $L \Longleftrightarrow$ a solution of $\partial L / \partial \mathbf{x}=0$ and $\partial L / \partial \lambda=0$
(1) $\left(A^{\top} A+\lambda C^{\top} C\right) \mathbf{x}=A^{\top} \mathbf{b}+\lambda C^{\top} \mathbf{d}$

$$
\begin{equation*}
\left.\|C \mathbf{x}-\mathbf{d}\|^{2}=\delta^{2} \quad\right\} \tag{2}
\end{equation*}
$$

"Normal Equations".

- Solving (1) for $\mathbf{x}(\lambda)$, inserting in (2) we get $f(\lambda)=\|C \mathbf{x}(\lambda)-\mathbf{d}\|^{2}$ and the secular equation

$$
f(\lambda)=\delta^{2}
$$

[^1]
Secular Equation Represented by BSVD

- BSVD (generalized SVD, also GSVD) for pair of matrices $A^{m \times n}, C^{p \times n}$:

$$
\begin{aligned}
& U^{\top} A X=D_{A} \\
&=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \geq 0 \\
& V^{\top} C X=D_{C}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{q}\right), \gamma_{i} \geq 0, q=\min (n, p)
\end{aligned}
$$

where $U^{m \times m}$ and $V^{p \times p}$ orthogonal and $X^{n \times n}$ nonsingular.

- If $\gamma_{1} \geq \ldots \geq \gamma_{r}>\gamma_{r+1}=\ldots=\gamma_{q}=0$ then $\mu_{i}=\frac{\alpha_{i}^{2}}{\gamma_{i}^{2}}, i=1, \ldots, r$ are the eigenvalues of generalised EV-Problem

$$
A^{\top} A \mathbf{x}=\mu C^{\top} C \mathbf{x} .
$$

- With $\mathbf{c}:=U^{\top} \mathbf{b}$ and $\mathbf{e}:=V^{\top} \mathbf{d}$ the secular equation becomes

$$
f(\lambda)=\sum_{1=1}^{r} \alpha_{i}^{2}\left(\frac{\gamma_{i} c_{i}-\alpha_{i} e_{i}}{\alpha_{i}^{2}+\lambda \gamma_{i}^{2}}\right)^{2}+\sum_{i=r+1}^{p} e_{i}^{2}=\delta^{2}
$$

f has at most r poles for $\lambda=-\mu_{i}$ and $f(\lambda)=\delta^{2}$ at most $2 r$ solutions

Characterization of the Solution If ($\mathbf{x}_{1}, \lambda_{1}$) and ($\mathbf{x}_{2}, \lambda_{2}$) are solutions of the normal equations, then Thm 1

$$
\left\|A \mathbf{x}_{2}-\mathbf{b}\right\|^{2}-\left\|A \mathbf{x}_{1}-\mathbf{b}\right\|^{2}=\frac{\lambda_{1}-\lambda_{2}}{2}\left\|C\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right\|^{2} .
$$

If $\lambda_{1}>\lambda_{2} \Longrightarrow\left\|A \mathbf{x}_{1}-\mathbf{b}\right\|<\left\|A \mathbf{x}_{2}-\mathbf{b}\right\|$
\Longrightarrow the largest solution λ determines solution

Thm 2

$$
\begin{aligned}
& -\frac{\lambda_{1}+\lambda_{2}}{2}\left\|C\left(\mathbf{x}_{1}-\mathrm{x}_{2}\right)\right\|^{2}=\left\|A\left(\mathrm{x}_{1}-\mathbf{x}_{2}\right)\right\|^{2} . \\
& \Longrightarrow \lambda_{1}+\lambda_{2}<0 \Longrightarrow \text { At most one } \lambda>0
\end{aligned}
$$

Geometric Interpretation for $n=2$

$$
\|A \mathbf{x}-\mathbf{b}\|^{2}=\text { min subject to }\|C \mathbf{x}-\mathbf{d}\|^{2}=\delta^{2}
$$

$$
\begin{aligned}
& L(\mathbf{x}, \lambda)=\|A \mathbf{x}-\mathbf{b}\|^{2}+\lambda\left(\|C \mathbf{x}-\mathbf{d}\|^{2}-\delta^{2}\right) \\
& \partial L / \partial \mathbf{x}=0 \Longleftrightarrow \\
& \nabla\|A \mathbf{x}-\mathbf{b}\|^{2}=-\lambda \nabla\|C \mathbf{x}-\mathbf{d}\|^{2}
\end{aligned}
$$

Stationary points: gradients are parallel

- P_{1}, P_{3}, P_{4} : gradients have same directions: $\Longrightarrow \lambda<0$
- P_{2} : gradients have opposite directions:
$\Longrightarrow \lambda>0$
- Solutions of the secular equation:

3 with $\lambda<0$ and one (the minimum, the
 solution of the problem) with $\lambda>0$.

Inequality Constraint
$\|A \mathbf{x}-\mathbf{b}\|^{2}=$ min subject to $\|C \mathbf{x}-\mathbf{d}\|^{2} \leq \delta^{2}$

1. $M=\{\mathbf{x} \mid\|A \mathbf{x}-\mathbf{b}\|=\min \}$
2. If $\left\|C \mathbf{x}^{*}-\mathbf{d}\right\| \leq \delta$ for some $\mathbf{x}^{*} \in M$ then \mathbf{x}^{*} is a solution.

Constraint is not active.
3. If $\{\mathbf{x} \mid\|C \mathbf{x}-\mathbf{d}\| \leq \delta\} \cap M=\emptyset$ then constraint is active, solution on boundary: $\|C \mathbf{x}-\mathbf{d}\|^{2}=\delta^{2}$
(a) solve secular equation $f(\lambda)=\delta^{2}$ for the only $\lambda^{*}>0$
(b) $\mathbf{x}\left(\lambda^{*}\right)$ is the solution.

One of the typical applications is from Christian Reinsch, "Smoothing by Spline Functions", 1967.

Example $1\|A \mathbf{x}-\mathbf{b}\|=\min$ s.t. $\|C \mathbf{x}-\mathbf{d}\| \leq 10$

A		\mathbf{b}				
0.7398	0.5244	-4.4414		C		\mathbf{d}
0.8930	0.7545	-5.9504		-1.6443	-1.9204	2.2650
0.0259	0.1698	-0.7691		-0.0263	-0.3913	3.0165
0.1376	0.6727	-2.1635		-1.9660	-0.2804	2.0781
0.4241	0.6187	-1.1464				

$\|A \mathbf{x}-\mathbf{b}\|=$ const, $\|C \mathbf{x}-\mathbf{d}\|=10$

$f(\lambda)=\|C \mathbf{x}(\lambda)-\mathbf{d}\|$
active constraint, $\lambda_{i}=[-0.7857,0.0772]$, poles $=-\mu_{i}=[-0.4582,-0.2935]$

Equality Constraint

$\|A \mathbf{x}-\mathbf{b}\|^{2}=\min$ subject to $\|C \mathbf{x}-\mathbf{d}\|^{2}=\delta^{2}$

1. Constraint is always active.
2. Compute the largest solution of the secular equation: $\lambda_{\max }$
3. $\lambda_{\text {max }}$ may be positive or negative.
4. The solution is $\mathbf{x}\left(\lambda_{\max }\right)$

Example $2\|A \mathbf{x}-\mathbf{b}\|=$ min s.t. $\|C \mathbf{x}-\mathbf{d}\|=10$

A		\mathbf{b}			
0.5859	0.6309	-3.9636		C	
0.1907	0.8920	-3.1196		-0.5194	-0.9237
0.5034	0.6734	-1.9904		3.7413	
0.0509	0.6853	-5.6050		-1.4917	-0.1797
0.0561	0.6957	-1.4789		-0.3088	-1.2986
0.3352	0.7998	-3.0672			

$$
\|A \mathbf{x}-\mathbf{b}\|=\text { const, }\|C \mathbf{x}-\mathbf{d}\|=10
$$

$$
f(\lambda)=\|C \mathbf{x}(\lambda)-\mathbf{d}\|
$$

$$
\lambda_{i}=[-1.6157,-0.9211,-0.1827,-0.0962], \text { poles }=-\mu_{i}=[-1.2686,-0.1393]
$$

Example 3 secular equation with one (double) pole

A		\mathbf{b}
0.9200	0.9900	2.9000
0.9800	0.8000	2.5800
0.0400	0.8100	1.6600
0.8500	0.8700	2.5900
0.8600	0.9300	2.7200
0.1700	0.2400	0.6500
0.2300	0.0500	0.3300
0.7900	0.0600	0.9100
0.1000	0.1200	0.3400
0.1100	0.1800	0.4700

	\mathbf{d}
	0.8147
	0.9058
	0.1270
	0.9134
	0.6324
	0.0975
	0.5785
	0.9575
	0.9649

$\lambda_{i}=[-1.4057,-0.5943]$,

Example 4 Special Case: Constant secular function

A		b	C		d
0.9200	0.9900	-0.7048	-0.0925	-0.0088	-0.2748
0.9800	0.8000	0.6638	-0.2666	0.1165	0.6711
0.0400	0.8100	0.2285	0.0353	-0.3772	0.5353
0.1100	0.1800	-0.1024	-0.3109	-0.2802	-0.4330

- In this example

$A^{\top} \mathbf{b}=0$ and $C^{\top} \mathbf{d}=0$
$\Longrightarrow\left(A^{\top} A+\lambda C^{\top} C\right) \mathbf{x}=0$
- $\mathbf{x}=0, f(\lambda)=\|\mathbf{d}\|^{2}=$ const.
- Nontrivial solution of normal equations are eigenvectors for $\lambda=-\mu_{i}$
- $\lambda_{i}=[-15.3424,-1.8882]$
- Solution is eigenvector for eigenvalue 1.8882, scaled so that $\|\rho C \mathbf{x}-\mathbf{d}\|=\delta=4$. $\rho= \pm 3.8730$.

Solving the Secular Equation

- Assume active constraint $\|C \mathbf{x}-\mathbf{d}\| \leq \delta$
- Want compute $\lambda^{*}>0$
- Consider Newton's iteration for the equations

$$
\begin{aligned}
& g_{1}(\lambda):=f(\lambda)-\delta^{2}=0 \\
& g_{2}(\lambda):=\sqrt{f(\lambda)}-\delta=0 \\
& g_{3}(\lambda):=\frac{1}{\sqrt{f(\lambda)}}-\frac{1}{\delta}=0 .
\end{aligned}
$$

- Reinsch first used g_{2}, starting with $\lambda_{0}=0$.

He observed better global convergence using g_{3}.
Proved also monotonic convergence.

Why Better Global Convergence for g_{3} ?

Compare the Newton iteration functions

$$
\begin{array}{ll}
\lambda-\frac{f-\delta^{2}}{f^{\prime}} & \text { for } g_{1} \\
\lambda-\frac{f-\delta^{2}}{f^{\prime}} \frac{2}{1+\frac{\delta}{\sqrt{f}}} & \text { for } g_{2} \\
\lambda-\frac{f-\delta^{2}}{f^{\prime}} \frac{2 \frac{\sqrt{f}}{\delta}}{1+\frac{\delta}{\sqrt{f}}} & \text { for } g_{3}
\end{array}
$$

For $\sqrt{f} \gg \delta$ the Newton step for g_{2} is twice the step for g_{1} !
And for g_{3} even larger, proportional to $\frac{\sqrt{f}}{\delta}$.

Geometric Argument for Reinsch's Proposal

- Geometric derivation to construct a zero finder for $f(x)=\delta^{2}$: Approximate f for $x=x_{k}$ by simpler function $h(x)$ such that $h^{(i)}\left(x_{k}\right)=f^{(i)}\left(x_{k}\right), i=0,1$.
- Solving $h(x)=\delta^{2}$ gives the new iterate x_{k+1}.
- Newton's method: $h(x)=a x+b \Longrightarrow x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)-\delta^{2}}{f^{\prime}\left(x_{k}\right)}$
- Reinsch's proposal: $h(x)=\frac{a}{(x-b)^{2}}$ gives

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)-\delta^{2}}{f^{\prime}\left(x_{k}\right)} G\left(x_{k}\right) \quad \text { with } \quad G(x)=\frac{2 \frac{\sqrt{f}}{\delta}}{1+\frac{\delta}{\sqrt{f}}}
$$

- The secular function is much better approximated by h than by a linear function!

Computing Derivatives of the Secular Function

Derivatives can be obtained by differentiating the normal equations:

- $\left(A^{\top} A+\lambda C^{\top} C\right) \mathbf{x}=A^{\top} \mathbf{b}+\lambda C^{\top} \mathbf{d}$

$$
f(\lambda)=\|C \mathbf{x}-\mathbf{d}\|^{2}
$$

- $\left(A^{\top} A+\lambda C^{\top} C\right) \mathbf{x}^{(k)}=-k C^{\top} C \mathbf{x}^{(k-1)}$

$$
C \mathbf{x}^{(0)}:=C \mathbf{x}-\mathbf{d}, \quad k=1,2, \ldots
$$

- $f^{(2 k-1)}(\lambda)=k \gamma_{2 k-1} \mathbf{x}^{(k) \top} C^{\boldsymbol{T}} C \mathbf{x}^{(k-1)}$

$$
f^{(2 k)}(\lambda)=\gamma_{2 k}\left\|C \mathbf{x}^{(k)}\right\|^{2}
$$

$$
\gamma_{2 k}=(2 k+1) \gamma_{2 k-1}, \quad \gamma_{2 k-1}=\frac{2}{k} \gamma_{2 k-2}, \quad \gamma_{1}=2
$$

Effective Computation for A, C dense and $\lambda^{*}>0$

- Avoid using normal equations! Rather solve the least squares problem

$$
\binom{A}{\sqrt{\lambda} C} \mathrm{x} \approx\binom{\mathrm{~b}}{\sqrt{\lambda} \mathbf{d}}
$$

- Use Eldén's Transformation to simplify

$$
\binom{A}{\sqrt{\lambda} C} \mathbf{x} \approx\binom{\mathbf{b}}{\sqrt{\lambda} \mathbf{d}} \longrightarrow\binom{A^{\prime}}{\sqrt{\lambda} I} \mathbf{x}^{\prime} \approx\binom{\mathbf{b}^{\prime}}{\sqrt{\lambda} \mathbf{d}^{\prime}}
$$

- For P, Q orthogonal with $\mathbf{y}=Q^{\top} \mathbf{x}$

$$
\left(\begin{array}{cc}
P^{\top} & 0 \\
0 & Q^{\top}
\end{array}\right)\binom{A}{\sqrt{\lambda} I} Q Q^{\top} \mathbf{x} \approx\binom{P^{\top} \mathbf{b}}{Q^{\top} \sqrt{\lambda} \mathbf{d}} \Longleftrightarrow\binom{P^{\top} A Q}{\sqrt{\lambda} I} \mathbf{y} \approx\binom{\mathbf{c}_{1}}{\mathbf{c}_{2}}
$$

Choose P and Q

1. SVD: $\Sigma=P^{\top} A Q \Longrightarrow\binom{\Sigma}{\sqrt{\lambda} I} \mathbf{y} \approx\binom{\mathbf{c}_{1}}{\mathbf{c}_{2}}$

+ Efficient iteration (n Givens rotations per step)
- Preparation: need SVD

2. Bidiagonalization: $B=P^{\top} A Q \Longrightarrow\binom{B}{\sqrt{\lambda} I} \mathbf{y} \approx\binom{\mathbf{c}_{1}}{\mathbf{c}_{2}}$

+ cheaper preparation
\pm still efficient iteration using $2 n$ Givens rotations per step followed by backsolve with bidiagonal matrix

One-point Iteration Methods

- Every fixed point iteration $x_{n+1}=F\left(x_{n}\right)$ can be seen as a Newton iteration to some $g(x)=0$

$$
x-\frac{g(x)}{g^{\prime}(x)}=F(x) \Longleftrightarrow g(x)=c \cdot\left(\int \frac{d x}{x-F(x)}\right) .
$$

- Example Halley's iteration $F(x)=x-\frac{2 f(x) f^{\prime}(x)}{2 f^{\prime}(x)^{2}-f^{\prime \prime}(x) f(x)}$

$$
g(x)=\exp \left(\int\left(\frac{f(x)}{f^{\prime}(x)}-\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\right) d x\right)=\frac{f(x)}{\sqrt{f^{\prime}(x)}}
$$

Thus Halley for $f(x)=0$ is Newton for $g(x)=\frac{f(x)}{\sqrt{f^{\prime}(x)}}=0$.

- Motivated by the secular equation I became interested in studiying fixed point iterations $x_{n+1}=F\left(x_{n}\right)$, where

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x)
$$

Third Order Iterative Methods

Assume s is a simple zero of f. Consider

- $x_{n+1}=F\left(x_{n}\right)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} G\left(x_{n}\right)$
- Let $u(x):=\frac{f(x)}{f^{\prime}(x)}$ then $F(x)=x-u(x) G(x)$
- We wish to have $F^{\prime}(s)=F^{\prime \prime}(s)=0$ for cubic convergence

$$
\begin{aligned}
F^{\prime} & =1-u^{\prime} G-u G^{\prime}, \quad F^{\prime \prime}=-u^{\prime \prime} G-2 u^{\prime} G^{\prime}-u G^{\prime \prime} \\
u & =f / f^{\prime}, \quad u^{\prime}=1-\frac{f f^{\prime \prime}}{f^{2}} \\
u^{\prime \prime} & =-\frac{f^{\prime \prime}}{f^{\prime}}+2 \frac{f f^{\prime \prime}}{f^{\prime 3}}-\frac{f f^{\prime \prime \prime}}{f^{\prime 2}} .
\end{aligned}
$$

- Since $u(s)=0, u^{\prime}(s)=1, u^{\prime \prime}(s)=-\frac{f^{\prime \prime}(s)}{f^{\prime}(s)}$

$$
\Longrightarrow F^{\prime}(s)=0 \text { if } G(s)=1 \text { and } F^{\prime \prime}(s)=0 \text { if } G^{\prime}(s)=\frac{1}{2} \frac{f^{\prime \prime}(s)}{f^{\prime}(s)}
$$

Third Order Iterative Methods (cont.)

- $G(s)=1, G^{\prime}(s)=\frac{1}{2} \frac{f^{\prime \prime}(s)}{f^{\prime}(s)}$ not helpful since we do not know s.
- $t(x):=\frac{f(x) f^{\prime \prime}(x)}{f(x)^{2}}=1-u^{\prime}(x) \Longrightarrow t(s)=0, \quad t^{\prime}(s)=-u^{\prime \prime}(s)=\frac{f^{\prime \prime}(s)}{f^{\prime}(s)}$
- Consider $G(x)=H(t(x)), \quad G(s)=H(0)$

$$
G^{\prime}(x)=H^{\prime}(t(x)) t^{\prime}(x) \Longrightarrow G^{\prime}(s)=H^{\prime}(0) \frac{f^{\prime \prime}(s)}{f^{\prime}(s)}
$$

Theorem Let s be a simple zero of f and H any function with $H(0)=1$, $H^{\prime}(0)=1 / 2$ and $\left|H^{\prime \prime}(0)\right|<\infty$. The iteration $x_{n+1}=F\left(x_{n}\right)$, with

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} H(t(x)) \quad \text { where } \quad t(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
$$

is of third order.

Many iterative methods are special cases of theorem

1. Euler's formula $H(t)=\frac{2}{1+\sqrt{1-2 t}}=1+\frac{1}{2} t+\frac{1}{2} t^{2}+\frac{5}{8} t^{3}+\ldots$
2. Halley's formula $H(t)=\frac{1}{1-\frac{1}{2} t}=1+\frac{1}{2} t+\frac{1}{4} t^{2}+\frac{1}{8} t^{3}+\ldots$
3. Quadratic inverse interpolation $H(t)=1+\frac{1}{2} t$
4. Ostrowski's square root iteration

$$
H(t)=\frac{1}{\sqrt{1-t}}=1+\frac{1}{2} t+\frac{3}{8} t^{2}+\frac{5}{16} t^{3}+\ldots
$$

5. Hansen-Patrick family $H(t)=\frac{\alpha+1}{\alpha+\sqrt{1-(\alpha+1) t}}=1+\frac{1}{2} t+\frac{\alpha+3}{8} t^{2}+\ldots$

Result by Schröder: all third order iteration formula have the form

$$
G(x)=H(t(x))+f(x)^{2} b(x)
$$

with b arbitrary bounded for $x \rightarrow s$

Summary

- My first encounter with Prof. Gene H. Golub was very fruitful
- it was the start in a new world for me
- it was the start of my academic career
- it was the start of deep friendship with Gene and with international colleagues

Thank you Gene!

References

1. Eldén, L., "Algorithms for the Regularization of III-conditioned Least Squares Problems", BIT, Vol. 17, 1977,pp 134-145.
2. Forsythe, G. E. and Golub, G. H. , "On the Stat. Values of a Second Degree Polynomial on the Unit Sphere", J. Soc. Indust. Appl. Math. 13 (1965).
3. Gander, W., "Least Squares with a Quadratic Constraint", Numer. Math. 36, 291-307 (1981).
-, "Least Squares with a Quadratic Constraint", Stanford Report CS-TR-78-697, November 1978.
4. Gander, W., "On Halley's Iteration Method", The American Mathematical Monthly, Vol. 92, No. 2 (Feb. 1985), pp. 131-134.
5. Reinsch, Chr. H., "Smoothing by Spline Functions", Numer. Math. 10 (1967), 177-183.
—, "Smoothing by Spline Functions II", Numer. Math. 16 (1971), 451-454.

[^0]: ahttp://www.cs.cas.cz/~harrachov

[^1]: ${ }^{\text {a }} \mathrm{He}$ also encouraged Lars Eldén to work on the same as I found out later!

