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Convex Polyhedra

A convexpolyhedron or simplypolyhedronP in Rd

is the set of solutions to a (finite) system of linear

inequalities ind-variables:

P = {x ∈ Rd : Ax ≤ b}

whereA ∈ Rm×d andb ∈ Rm. A convexpolytope is

a bounded polyhedron.

A polyhedron is called H-polyhedron (resp.

V -polyhedron) if it is given by an inequality system

(resp. a set of generators).



Facet Listing (Representation Conversion)

Input A Output λEXT(A)

a set ofn(= 48) points all m(= 26) inequalities,

in d(= 3) space, a V-polytope an H-polytope

• It is also known as theConvex Hullproblem.

• The reverse problemVertex Listingis equivalent by duality.

• For d = 2,3, there is an optimalO(n logn) algorithm.



An Example
* filename: mit729-9.ine

* Ternary Alloy Ground State Analysis

* See, Ceder, G., Garbulski, G.D., Avis, D. and Fukuda, K.,

* "Ground states of a ternary lattice model with nearest

* and next-nearest neighbor interactions,"

* This polytope has 4862 vertices.

H-representation

begin

729 9 integer

12 2 0 0 0 0 -3 0 0

36 5 1 0 0 0 -6 -3 0

0 0 0 0 0 0 -1 -2 -1

0 0 0 0 0 0 -1 0 1

0 0 0 0 0 0 -1 2 -1

0 -1 1 0 0 0 1 -1 0

48 -4 12 0 0 0 3 -6 -9

0 -2 2 0 0 0 1 0 -3

0 -1 1 0 0 0 0 0 -3

0 -1 1 0 0 0 0 -3 -3

0 -1 -1 0 0 0 1 1 0

0 -1 -1 0 0 0 0 3 -3

0 -1 -1 0 0 0 0 0 -3

0 -2 -2 0 0 0 1 0 -3

24 2 0 0 0 0 -1 0 0

.

.

.

320 16 16 -1 -2 -1 -4 -8 -4

0 -8 8 3 2 -5 -4 -32 -12

0 -6 2 1 2 -3 1 2 -15

end



Polyhedral Computation: When Was It Born (to me)?

• Public releases of representation conversion (RC) codes:

cdd (KF) v.0.23, and lrs (Avis) v.1.1 in 1993.

qhull (Barber-Huhdanpaa) v2.b05 in 1994.

• Questions from users started to overwhelm my work in late 1997.

• Polyhedral ComputationFAQ in November 26, 1997.

(Latest version in 2004.)

What is Polyhedral Computation? Parallels in History

• Mathematical Programming⇐= Major Progress in LP

• Polyhedral Computation⇐= Major Progress in RC



Fundamental Problems in Polyhedral Computation

• Representation Conversion (V-Polytope⇐⇒ H-Polytope)

• Redundancy Removal (for V- and H-Polytopes)

• Arrangement/Zonotope Construction

• Minkowski Addition of Polytopes

• Gröbner Walk and Gr̈obner Fan Construction

• Multiparametric LP/LCP

• Lattice Points in a Polytope, Polytope Projection, Triangulations, etc.

Ideal Algorithms

• Time-Efficient Algorithm (Polynomial-Time)

• Space-Efficient Algorithm (Compactness)



Redundancy Removal (for V-Polytopes)

Input A Output λESS(A)

a set ofn(= 500) points all n′(= 69) extreme points,

in d(= 3) space, a V-polytope a minimal V-representation

• In general,much easier than the representation conversion.
(One can compute it for very larged, by solving many LPs.)

• Yet, in lower dimensions (2, 3), it is faster to use the repr. conversion.



Arrangement Construction

Input V Output λCELL(V )

1
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4

+-

+
-

+
-

+
-

(-, +, - , -)

(+, +, -, -)
(−,+,−,−), (+,+,−,−),

(−,−,−,−), (+,−,−,−),

(+,+,+,−), (−,−,+,−),

(−,+,+,−),

and the negatives.

k(= 4) hyperlane normals all 14 sign vectors

in dimensiond(= 3) (the underlying oriented matroid)



Zonotope Construction

Input I1, I2, . . . , Ik Output λZO(I1, I2, . . . , Ik)

x

y

z

k(= 5) line segments all n(= 22) extreme points

in dimensiond(= 3) of I1 + I2 + · · ·+ Ik

Minkowski-sum: P = P1 +P2 := {v1 + v2 : v1 ∈ P1 andv2 ∈ P2}.



Duality of Arrangements and Zonotopes
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(-, +, - , -)

(0, +, -, -)

(+, +, -, -)

Z

v3

v4

v1

v2

Cells Extreme points

X = (−,+,−,−) ⇐⇒ z = v2

X = (+,+,−,−) ⇐⇒ z = v1 + v2



Minkowski Addition of V-Polytopes

Input V1,V2, . . . ,Vk Output λMI (V1,V2, . . . ,Vk)

+

k(= 2) V-polytopes all n(= 24) extreme points,

in dimensiond(= 3) a V-representation of the sum

Minkowski-sum: P = P1 +P2 := {v1 + v2 : v1 ∈ P1 andv2 ∈ P2}.



Gröbner Basis Listing (Gröbner Fan Construction)

Input V Output λGR(V )

A polynomial idealI =

〈b−a2,c−a3,d−a6,b3−d〉

⊂ Q[a,b,c,d]

G0 = {b−a2,c−a3,d −a6},

G1 = {c2−d,ab− c,b2−ac,a2−b},

G2 = {c2−d,a3− c,b−a2},
...

G11 = {a6−d,b−a2,c−a3}.

n(= 4) generating polynomials all m(= 12) reduced Gr̈obner bases

in d(= 4) variables

For example,b3−d is redundant in theinput, because

b3−d = (b2 +ba2 +a4)(b−a2)+(−1)(d −a6).



Ideal Algorithms?

There are no uniformly accepted complexity notions for LISTING

problems for which theoutputsize can be LARGE.

Nevertheless, one can extend the notion of polynomial algorithms

naturally.

• An algorithm ispolynomial if it runs in TIME polynomial in both the

input size and theoutputsize. (This is sometimes called “total

polynomial” or “output sensitive”.)

• An algorithm iscompact if it runs in SPACE polynomial in theinput

size ONLY.

An ideal algorithm is a compact polynomial algorithm.

[Alternative goal: Worst-output-case optimal algorithms.]



Current Status of General Dimensional Polyhedral Computation

Problem Algorithms Eff. Implementations

Representation IS (Motzkin’53,Gr̈unbaum’63, etc) !po, !co cdd, cgal, qhull,...

conversion RS(Avis-KF ’91) po*, co lrs

PD(Bremner-KF-Marzetta ’96) po*, co* pd (based on lrs)

Arr./Zonotope IS (Edelsbrunner et al ’86) po, !co

construction RS(Avis-KF ’92) po, co rs tope(+cddlib)

Minkowski IS (Gritzmann-Sturmfels’93) !po, !co

addition RS(KF ’02) po, co minksum(+cddlib)

Gröbner bases RS(KF-Jensen-Thomas 04’) opo,oco gfan(+cddlib)

po=polynomial; co= compact;o= oracle; != not; (*)under non-degeneracy

IS = Incremental Search; RS=Reverse S.; PD=Primal-Dual

cdd(KF),cgal(many),gfan(Jensen),qhull(Barbar),lrs(Avis),minksum(Weibel),pd(Marzetta)



Reverse Search for Vertex Listing

Reverse the simplex method from theoptimal vertexin all possible ways:

!!

!$

"*

#"

$"

min  x1 + x2 + x3

Complexity: O(md f0)-time andO(md)-space under nondegeneracy.



A Challenge in Polyhedral Representation Conversion

PolyhedralVerificationProblem(Lovasz):

Given a rationalH-polytopeP and a rationalV-polytopeP′, decide

whetherP = P′.

• PVP is clearly in coNP.

• Is PVP in coNPC?

(A substantial progress was made by Khachiyan et al in 2005.)

• PVP is in P⇐⇒ the representation conversion admits an

“incrementally” polynomial algorithm.

(See the Polyhedral Computation FAQ [4] for the only-if part).



Redundancy Removal (for V-Polytopes)

Input A Output λESS(A)

a set ofn(= 500) points all n′(= 69) extreme points,

in d(= 3) space, a V-polytope a minimal V-representation

• In general,much easier than the representation conversion.

(One can compute it for very larged, by solving many LPs.)



Complexity of Redundancy Removal

Lemma. (Each) Redundancy removal is as hard as LP.

H-Redundancy V -Redundancy

H-Implicit

Linearity
V -Implicit

Linearity

H-Boundedness

Strict

(I)

(III)

(II) (IV)

(V)

B is linearly reducible to ABA :

Linear equivalence of problems

Feasibility

Feasibility

(VI)

H-Redundancy: GivenA ∈ Qm×d , b ∈ Qm andi ∈ [m], determine
whetherAi x ≤ bi is redundant in the systemA x ≤ b.



Complexity of Redundancy Removal

By the linear equivalence lemma, the H-redundancy (or V-redundancy)

checking takes time proportional to LP(m,d), that is, the time necessary

to solve a linear program of sizem×d.

However, one can do better to removeall redundancies than the trivial

boundm× LP(m,d).

Theorem. (Clarkson ’94)

An algorithm to detectall redundancies from an H(V)-representation in

time m× LP(s,d) exists, wheres(≤ m) is the number of essential

inequalities (points).



A Challenge in Redundancy Removal

CanOneDo BetterThanClarkson?

Is there any algorithm to remove all redundancies from an

H(V)-representation which runs faster than Clarkson’s algorithm?

• Can one exploit similarities of the LP’s solved by LP-based

algorithms?

• Can one design a randomized algorithm which runs faster (in the

expected sense)?



Zonotope Construction

Input I1, I2, . . . , Ik Output λZO(I1, I2, . . . , Ik)

x

y

z

k(= 5) line segments all n(= 22) extreme points

in dimensiond(= 3) of I1 + I2 + · · ·+ Ik



Arrangement and Zonotope Construction

There are different approaches.

Theorem [Edelsbrunner-O’Rourke-Seidel ’86].

For d ≥ 3, there exists anincremental algorithmto generate all vertices of

a zonotope given byk generators inRd in O(kd−1) time andO(kd−1)

space for fixedd.

This algorithm is worst-case optimal, but it is neither polynomial nor

compact.

Theorem [Avis-KF ’96 and Ferrez-KF-Liebling ’01].

There exists areverse search algorithmto generate allv vertices in

O(k LP(k,d) v) time andO(k d) space.

This algorithm is both polynomial and compact.



Minkowski Addition of V-Polytopes

Input V1,V2, . . . ,Vk Output λMI (V1,V2, . . . ,Vk)

+

k(= 2) V-polytopes all n(= 24) extreme points,

in dimensiond(= 3) a V-representation of the sum

Minkowski-sum: P = P1 +P2 := {v1 + v2 : v1 ∈ P1 andv2 ∈ P2}.



Complexity of Minkowski Addition of Polytopes

Sometimes, the Minkowski sum of polytopes is very simple andits vertex

complexity is linear bounded by the input size.

Proposition (Linearly Bounded Minkowski-Addition ). For eachk ≥ 2

andd ≥ 2, there is an infinite family of Minkowski additions for which

f0(P1 +P2 + · · ·+Pk) ≤ f0(P1)+ f0(P2)+ · · ·+ f0(Pk).

+ =



Complexity of Minkowski Addition of Polytopes

Theorem (Tight Upper Bound ) [KF-Weibel ’07 [7]].
In dimensiond ≥ 3, it is possible to choosek (≤ d −1) polytopes

P1, . . . ,Pk so that the trivial upper bound for the number of vertices is

attained by their Minkowski sum.

f0(P1 +P2 + · · ·+Pk) = f0(P1)× f0(P2)×·· ·× f0(Pk).

+ =



Complexity of Minkowski-Addition of Polytopes

f0(P1) = f0(P2) = 14

f0(P1+P2) = f0(P1)× f0(P2) = 196



Gritzmann-Sturmfels’ Alogrithm I (1993)

This is an input-polynomial algorithm for fixedk.

Input: V1,V2, . . . ,Vk

Algorithm: For all tuples(v1,v2, . . . ,vk) with vi ∈Vi,

decide whetherv = v1 + v2 + · · ·+ vk is extreme inP1 +P2 + · · ·+Pk.

(This can be done by solving an LP.)

v

v1

v2

v = v1 + v2

 +

Complexity:O(s ·LP(s−d,s)), wheres = |V1|× |V2|× · · ·× |Vk|.



Minkowski Addition and Outer Normal Cones/Fans

P2 P1 + P2+ =P1

=

N(P1 ) N(P2 ) N(P1 +P2)

Computing the Minkowski addition can be considered as superimposing

the fans of outer normal cones.



Gritzmann-Sturmfels’ Algorithm II (1993)

P2 P1 + P2+ =P1!!!!!Z(P1) + = !!!!!!!Z(P1)!"!Z(P2)     Z(P2)

ComputeN(Z(P1)+Z(P2)) by the incremental zonotope construction

algorithm inO(md−1) time andO(md−1) space. Then, merge some cones

to getN(P1 +P2).



New Idea: Adjacency in the Minkowski Addition

Listing all neighborsof a given vertexv is easy via LPs.

They areinheritedfrom adjacency in the corresponding vertices ofPi’s.

v

v1

v2

v = v1 + v2

 +



Reverse Search for the Minkowski Addition

Define aunique directed spanning treerooted at any fixed vertexv∗,

e,g, the simplex pivot tree (with a fixed rule).

v* v*

A reverse search algorithmtraces reverselythe tree from the rootv∗ in

depth-first manner, using an adjacency oracle.

Time complexity: O(δLP(δ,d) f0(P)), whereδ is the sum of the max

degrees ofG(Pi)’s.



An Implementation of Minkowski Sum by Weibel (2005)

• A parallel implementation of the reverse search algorithm is freely

available:minksum by Christophe Weibel.

• It is written in C++, using GMP and the rational arithmetic LPcode

in cddlib by KF.

Experiments (The sum of a simplex and its dual) on Pentium 1.7MHz

d cpu (sec) cpuinit cpu lp #vert #edges #lp lpsize

10 4.21 0.79 1.79 110 990 704 20x11

20 91.91 16.39 51.74 420 7980 3004 40x21

30 601.61 108.28 371.06 930 26970 6904 60x31

The Hardest Problem Solved

A Minkowski sum of 9 polytopes inR27, each of which has only 6

vertices. It took about a month to generate all 2,372,583 vertices.



A Challenge in Minkowski Sum of Polytopes

How hard is to compute the facets of a Minkowski sum?

WorstCaseBehavior(UpperBoundTheorem)?

Given two polytopesP1 andP2 with n1 andn2 vertices each, what is the

maximum number of facetsP1 +P2 can have?

• The maximum number of vertices isn1×n2 (KF-Weibel 2005).

• The tight bound for facets is known ford ≤ 3 (KF-Weibel 2006).

• This question relates closely to finding an efficient algorithm to list

all facets of the sum.



Gröbner Basis Listing (Gröbner Fan Construction)

Input V Output λGR(V )

A polynomial idealI =

〈b−a2,c−a3,d−a6,b3−d〉

⊂ C[a,b,c,d]

G0 = {b−a2,c−a3,d −a6},

G1 = {c2−d,ab− c,b2−ac,a2−b},

G2 = {c2−d,a3− c,b−a2},
...

G11 = {a6−d,b−a2,c−a3}.

n(= 4) generating polynomials all m(= 12) reduced Gr̈obner bases

in d(= 4) variables



An Implementation of a Gröbner Fan Algorithm
(by Jensen 2004)

• A faithful implementation of the reverse search algorithm due to

KF-Jensen-Thomas, an extended version of Sturmfels’ Algorithm

(1995):gfan by Anders Jensen.

• It is written in C++, using both GMP and the rational arithmetic LP

code in cddlib by KF.

A Computed Example (Example 3.9 in Sturmfels’ book)

The idealI = 〈a5 +b3 + c2−1,a2 +b2 + c−1,a6 +b5 + c3−1〉 has

exactly 360 G̈obner bases. It took 105 seconds on a laptop (1.8 GHz

AMD XP-M). One third of the time is spent in the LP solving.



The Gröbner Fan of 〈a5 +b3 + c2−1,a2 +b2 + c−1,a6 +b5 + c3−1〉

Lexicographic Lexicographic

Lexicographic

ab

c



Multiparametric LCP

(GivenM ∈ Rn×n: S-matrix,q ∈ Rn, A ∈ Rn×s)

LCP: w = Mz+q,w ≥ 0,z ≥ 0

wT z = 0.

pLCP(θ): w = Mz+q+Aθ,w ≥ 0,z ≥ 0

wT z = 0.

Goal: Pre-solvepLCP(θ) for all possibleθ ∈ Rs.

This amounts to partitionthe parameter spaceinto full-dimensional

“critical” regions each of which has a unique (lexico) optimal basis.

A recent work by Jones et al (2006) shows that the closure of a critical

region is a polyhedron but the partition is not a cell complexin general.



The Set of All Critical Regions: A P-Matrix Example

n = 10,d = 2. The figure generated by the MPT toolbox, ETH Zurich.



The Set of All Critical Regions: A PSD Example

n = 10,d = 2. The figure generated by the MPT toolbox, ETH Zurich.



The Set of All Critical Regions: A PSD Example (Not a Cell Complex)
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The figure taken from Spjotvold et al. 2005.



Sufficient pLCPs are Well-Behaving

K(M): thecomplementaryrange, i.e. the set of allq’s such that

LCP(M,q) has a solution.

Q0: the class of all matricesM such thatK(M) is convex.

D: the class of fully semimonotone matrices.

Proposition: Let M ∈ D∩Q0 (e.g. a sufficient matrix). For allq ∈ K(M),

there existsδ > 0 such that LCP(M,q+(ε1,ε2, . . . ,εn)T ) has a unique

feasible complementary basis for allε ∈ (0,δ).

Corollary: There is a canonical mapτ for sufficient pLCPs.

Columbano-KF-Jones (2009) gave an exact algorithm to compute this

canonical map. It is polynomial if the problem is nondegenerate.



Concluding Remarks

• Polyhedral computation is a rapidly growing research domain with

applications in science, engineering, social sciences, etc.

• The availability ofopen-source software packageshas increased the

popularity of polyhedral computation methods considerably.

• There are manychallenging open problemsin polyhedral

computation: the PVP problem, exploiting symmetries, Minkowski

H-additions, faster redundancy removal, computing polyhedral

projections, counting lattice points, etc.

• Many instances in applications are too hard to solve exactly.

Possibilities toapproximate the outputshould be explored.
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