Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Polyhedral Computation, Spring 2014 Assignment 6^{*}

May 13, 2014

Problem 1 (Bimatrix Game):

Consider the bimatrix game given in terms of

$$
A=\left(\begin{array}{ll}
6 & 3 \\
1 & 5
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
5 & 1 \\
3 & 6
\end{array}\right)
$$

1. Is there a pure Nash equilibrium?
2. Is the mixed strategy $((1 / 2,1 / 2),(1 / 2,1 / 2))$ a Nash equilibrium?
3. Depict the two associated polytopes

$$
\begin{aligned}
& P_{1}=\left\{x \in \mathbb{R}^{2}: x \geq \mathbf{0}, B^{T} x \leq \mathbf{1}\right\} \text { and } \\
& P_{2}=\left\{y \in \mathbb{R}^{2}: A y \leq \mathbf{1}, y \geq \mathbf{0}\right\} .
\end{aligned}
$$

Normalize all non-zero extreme points of P_{1} and P_{2}. The arising vectors are denoted by P_{1}^{\prime} and P_{2}^{\prime} respectively. Build pairs of vectors, one in P_{1}^{\prime} and the other one in P_{2}^{\prime}, to enumerate all Nash equilibria.
4. Use the program given in http://banach.lse.ac.uk/form.html to compute all Nash equlibria of the bimatrix game given by

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
3 & 3 & 1 \\
1 & 1 & 2 \\
3 & 3 & 2 \\
3 & 2 & 3
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
2 & 3 & 1 \\
2 & 2 & 2 \\
3 & 3 & 1 \\
2 & 1 & 1 \\
3 & 1 & 1
\end{array}\right)
$$

[^0]Problem 2 (Central Arrangement): Let

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \\
-1 & 1
\end{array}\right)
$$

and let \mathcal{A} be the central arrangement with representation $(A, \mathbf{0})$.

1. Draw the arrangement \mathcal{A}.
2. Compute the face lattice $\mathcal{F}(\mathcal{A})$.
3. Determine P_{A} and its dual $\left(P_{A}\right)^{*}$, and check Theorem 10.2.

Problem 3 (Face Lattice of Central Arrangements): Prove Theorem 10.2. Assume that $A \in \mathbb{R}^{m \times d}$ has full column rank, that is, $A x=\mathbf{0}$ implies $x=\mathbf{0}$. Proceed as described in the following. For any $y \in \mathbb{R}^{m}$, let $\operatorname{sgn}(y)$ be the corresponding sign vector with $\operatorname{sgn}(y)_{i}$ equal to 1 if $y_{i}>0,-1$ if $y_{i}<0$ and 0 otherwise. Given any non-zero vector $x \in \mathbb{R}^{d}$, let $p(x):=\frac{x}{\operatorname{sgn}(A x)^{T} A x}$ and $a(x):=\left\{y \in\{1,-1\}^{m}: y^{T} A x=1\right\}$. Show that for every non-zero x and all $y \in\{1,-1\}^{m}$, we have

1. $p(x) \in P_{A}$, and
2. $y \in a(p(x))$ if and only if $\operatorname{sgn}(y)_{i}=\operatorname{sgn}(A x)_{i}$ for all components i with $(A x)_{i} \neq 0$.

[^0]: * Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than Tuesday, May 27, 2014.

