Polyhedral Computation, Spring 2014 Assignment 6*

May 13, 2014

Problem 1 (Bimatrix Game):

Consider the bimatrix game given in terms of

$$A = \begin{pmatrix} 6 & 3 \\ 1 & 5 \end{pmatrix} \text{ and } B = \begin{pmatrix} 5 & 1 \\ 3 & 6 \end{pmatrix}.$$

- 1. Is there a pure Nash equilibrium?
- 2. Is the mixed strategy ((1/2, 1/2), (1/2, 1/2)) a Nash equilibrium?
- 3. Depict the two associated polytopes

$$P_1 = \{ x \in \mathbb{R}^2 : x \ge \mathbf{0}, B^T x \le \mathbf{1} \} \text{ and}$$
$$P_2 = \{ y \in \mathbb{R}^2 : Ay \le \mathbf{1}, y \ge \mathbf{0} \}.$$

Normalize all non-zero extreme points of P_1 and P_2 . The arising vectors are denoted by P'_1 and P'_2 respectively. Build pairs of vectors, one in P'_1 and the other one in P'_2 , to enumerate all Nash equilibria.

4. Use the program given in http://banach.lse.ac.uk/form.html to compute all Nash equilibria of the bimatrix game given by

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 2 \\ 3 & 3 & 2 \\ 3 & 2 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 3 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}.$$

^{*}Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than **Tuesday, May 27**, **2014**.

Problem 2 (Central Arrangement): Let

$$A = \begin{pmatrix} 1 & 0\\ 0 & 2\\ -1 & 1 \end{pmatrix}$$

and let \mathcal{A} be the central arrangement with representation $(\mathcal{A}, \mathbf{0})$.

- 1. Draw the arrangement \mathcal{A} .
- 2. Compute the face lattice $\mathcal{F}(\mathcal{A})$.
- 3. Determine P_A and its dual $(P_A)^*$, and check Theorem 10.2.

Problem 3 (Face Lattice of Central Arrangements): Prove Theorem 10.2. Assume that $A \in \mathbb{R}^{m \times d}$ has full column rank, that is, $Ax = \mathbf{0}$ implies $x = \mathbf{0}$. Proceed as described in the following. For any $y \in \mathbb{R}^m$, let $\operatorname{sgn}(y)$ be the corresponding sign vector with $\operatorname{sgn}(y)_i$ equal to 1 if $y_i > 0$, -1 if $y_i < 0$ and 0 otherwise. Given any non-zero vector $x \in \mathbb{R}^d$, let $p(x) := \frac{x}{\operatorname{sgn}(Ax)^T Ax}$ and $a(x) := \{y \in \{1, -1\}^m : y^T Ax = 1\}$. Show that for every non-zero x and all $y \in \{1, -1\}^m$, we have

- 1. $p(x) \in P_A$, and
- 2. $y \in a(p(x))$ if and only if $sgn(y)_i = sgn(Ax)_i$ for all components i with $(Ax)_i \neq 0$.