Polyhedral Computation, Spring 2014 Assignment 3*

March 25 , 2014

Problem 1 (Lower bound on the Size of a Hilbert Basis): In the proof of Theorem 4.1, assume that t = n and the rational cone is generated by n linearly independent vectors $C = \operatorname{cone}(\{a_1, a_2, \ldots, a_n\})$. Derive a tight lower bound of k in terms of n and the absolute value of the determinant $\det([a_1, a_2, \ldots, a_n])$. Note that k is the number of lattice points in the zonotope Z and $k \geq 2^n$, because the zonotope Z is combinatorially a cube.

Problem 2 (Dual of a Zonotope): Suppose we are given some vectors v_1, v_2, \ldots, v_k in \mathbb{R}^n . Let I_i denote the line segment $[\mathbf{0}, v_i]$, that is, $I_i := \{x : x = \lambda_i v_i \text{ and } 0 \le \lambda_i \le 1\}$. The Minkowski sum $Z := I_1 + I_2 + \cdots + I_k$ over all line segments is called a zonotope.

- 1. Prove that every extreme point of Z has the form $\sum_{i=1}^{k} \lambda_i v_i$ where $\lambda_i \in \{0, 1\}$ for all $i = 1, \ldots, k$.
- 2. Give an example of a zonotope for which not every point of the form $\sum_{i=1}^{k} \lambda_i v_i$ where $\lambda_i \in \{0, 1\}$ for all i = 1, ..., k is an extreme point.
- 3. Find an H-representation of a dual of the zonotope Z.

Problem 3 (Euler's Relation): Let P be any 3-polytope. The vector $f(P) = (f_{-1}, f_0, f_1, f_2, f_3)$ where f_i denotes the number of k-dimensional faces is the f-vector of P. Euler's relation says that for every 3-polytope, we have $f_0 - f_1 + f_2 = 2$.

- 1. Draw four different 3-polytopes with at most nine edges.
- 2. Prove that those are the only ones by using Euler's relation.

 $^{^*}$ Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than **Tuesday, April 08, 2014**.

Problem 4 (Soccer Ball): Answer the following questions on the graphs of 3-polytopes.

- 1. Let any simple 3-polytope with n vertices be given. Determine the number of edges and the number of facets as function of n by using Euler's relation.
- 2. The soccer ball, depicted below, consists of pentagonal and hexagonal facets. Derive their numbers.

3. Determine the maximum number of edges and the maximum number of facets a 3-polytope with n vertices can have as a function of n. Does the soccer ball, or its dual, attain the maximum?