Polyhedral Computation, Spring 2014 Assignment 1*

February 25, 2014

Problem 1 (Rational Numbers): For any two rational numbers r and s, show that

- $\operatorname{size}(r \times s) \leq \operatorname{size}(r)+\operatorname{size}(s)$
- $\operatorname{size}(r+s) \leq 2(\operatorname{size}(r)+\operatorname{size}(s))$

Problem 2 (Euclidean Algorithm):

(a) Explain why the Euclidean algorithm is correct.
(b) Analyze the time complexity of the algorithm.

Problem 3 (Hermite Normal Form): Consider the integral matrix:

$$
A=\left(\begin{array}{cccc}
-4 & 6 & -6 & -6 \\
6 & -3 & -9 & -3 \\
4 & -3 & 9 & -3
\end{array}\right)
$$

(a) Compute the Hermite normal form $[B, 0]$ of the matrix A by hand.
(b) Solve the diophantine equation systems $A x=b$ and $A x=b^{\prime}$ with $x \in \mathbb{Z}^{4}$ where

$$
b=\left(\begin{array}{c}
0 \\
12 \\
18
\end{array}\right), \quad b^{\prime}=\left(\begin{array}{c}
4 \\
6 \\
3
\end{array}\right)
$$

If a system has no solution, find a certificate of infeasibility.

[^0](c) Compute the transformation matrix T such that $A T=[B, 0]$ either by hand or any symbolic mathematics system (such as maple or mathematica).
(d) Find the general solution to any of the feasible systems in (b).

Problem 4 (Lattice Basis): Let $A \in \mathbb{Q}^{m \times n}$ be a rational matrix of full row rank, let B be a basis of the lattice $L(A)$ and let B^{\prime} be a nonsingular $m \times m$ matrix whose column vectors are points in $L(A)$. Show that

- $|\operatorname{det}(B)| \leq\left|\operatorname{det}\left(B^{\prime}\right)\right|$.
- B^{\prime} is a basis of $L(A)$ if and only if $|\operatorname{det}(B)|=\left|\operatorname{det}\left(B^{\prime}\right)\right|$.

Problem 5 (Fourier-Motzkin Elimination): Consider a system of linear inequalities $A x \leq b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Apply Fourier-Motzkin Elimination in the i 'th variable. Denote the resulting matrix with A^{\prime}, the right-hand side with b^{\prime}.

1. Prove that $A x \leq b \Leftrightarrow A^{\prime} x^{\prime} \leq b^{\prime}$ where $x^{\prime}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)^{T}$.
2. Determine whether the following two systems of inequalities admit a feasible solution.

$$
\left(\begin{array}{cc}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & -1 \\
-5 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
4 \\
5 \\
6 \\
0 \\
-8
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
4 & 2 \\
-3 & -1 \\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
5 \\
-1 \\
17 \\
-11 \\
8
\end{array}\right)
$$

[^0]: ${ }^{*}$ Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than Tuesday, March 11, 2014.

